Simple realizability of complete abstract topological graphs simplified

Jan Kynčl

Charles University, Prague

Graph: $G=(V, E), V$ finite, $E \subseteq\binom{V}{2}$

Graph: $G=(V, E), V$ finite, $E \subseteq\binom{V}{2}$
Topological graph: drawing of an (abstract) graph in the plane

$$
\begin{aligned}
\text { vertices } & =\text { points } \\
\text { edges } & =\text { simple curves }
\end{aligned}
$$

Graph: $G=(V, E), V$ finite, $E \subseteq\binom{V}{2}$
Topological graph: drawing of an (abstract) graph in the plane

$$
\begin{aligned}
\text { vertices } & =\text { points } \\
\text { edges } & =\text { simple curves }
\end{aligned}
$$

forbidden:

Graph: $G=(V, E), V$ finite, $E \subseteq\binom{V}{2}$
Topological graph: drawing of an (abstract) graph in the plane

$$
\begin{aligned}
\text { vertices } & =\text { points } \\
\text { edges } & =\text { simple curves }
\end{aligned}
$$

forbidden:

Graph: $G=(V, E), V$ finite, $E \subseteq\binom{V}{2}$
Topological graph: drawing of an (abstract) graph in the plane

$$
\begin{aligned}
\text { vertices } & =\text { points } \\
\text { edges } & =\text { simple curves }
\end{aligned}
$$

forbidden:

Graph: $G=(V, E), V$ finite, $E \subseteq\binom{V}{2}$
Topological graph: drawing of an (abstract) graph in the plane

$$
\begin{aligned}
\text { vertices } & =\text { points } \\
\text { edges } & =\text { simple curves }
\end{aligned}
$$

forbidden:

simple: any two edges have at most one common point

or

simple: any two edges have at most one common point

or

complete: $E=\binom{v}{2}$
simple: any two edges have at most one common point

or

complete: $E=\binom{V}{2}$

topological graph
simple complete topological graph
simple: any two edges have at most one common point

or

complete: $E=\binom{v}{2}$

topological graph drawing
simple complete topological graph simple drawing of K_{5}

- Abstract topological graph (AT-graph):

$$
A=(G, \mathcal{X}) ; G=(V, E) \text { is a graph, } \mathcal{X} \subseteq\binom{E}{2}
$$

- Abstract topological graph (AT-graph):

$$
A=(G, \mathcal{X}) ; G=(V, E) \text { is a graph, } \mathcal{X} \subseteq\binom{E}{2}
$$

- in a topological graph $T \ldots \mathcal{X}_{T}=$ set of crossing pairs of edges
- Abstract topological graph (AT-graph):

$$
A=(G, \mathcal{X}) ; G=(V, E) \text { is a graph, } \mathcal{X} \subseteq\binom{E}{2}
$$

- in a topological graph $T \ldots \mathcal{X}_{T}=$ set of crossing pairs of edges
- T is a simple realization of (G, \mathcal{X}) if $\mathcal{X}_{T}=\mathcal{X}$
- Abstract topological graph (AT-graph):

$$
A=(G, \mathcal{X}) ; G=(V, E) \text { is a graph, } \mathcal{X} \subseteq\binom{E}{2}
$$

- in a topological graph $T \ldots \mathcal{X}_{T}=$ set of crossing pairs of edges
- T is a simple realization of (G, \mathcal{X}) if $\mathcal{X}_{T}=\mathcal{X}$
- AT-graph A is simply realizable if it has a simple realization
- Abstract topological graph (AT-graph):

$$
A=(G, \mathcal{X}) ; G=(V, E) \text { is a graph, } \mathcal{X} \subseteq\binom{E}{2}
$$

- in a topological graph $T \ldots \mathcal{X}_{T}=$ set of crossing pairs of edges
- T is a simple realization of (G, \mathcal{X}) if $\mathcal{X}_{T}=\mathcal{X}$
- AT-graph A is simply realizable if it has a simple realization
Example: $A=\left(K_{4},\{\{\{1,3\},\{2,4\}\}\}\right)$
simple realization of A :

- Abstract topological graph (AT-graph):

$$
A=(G, \mathcal{X}) ; G=(V, E) \text { is a graph, } \mathcal{X} \subseteq\binom{E}{2}
$$

- in a topological graph $T \ldots \mathcal{X}_{T}=$ set of crossing pairs of edges
- T is a simple realization of (G, \mathcal{X}) if $\mathcal{X}_{T}=\mathcal{X}$
- AT-graph A is simply realizable if it has a simple realization
Example: $A=\left(K_{4},\{\{\{1,3\},\{2,4\}\}\}\right)$
simple realization of A :

$A=\left(K_{5}, \emptyset\right)$
- Abstract topological graph (AT-graph):

$$
A=(G, \mathcal{X}) ; G=(V, E) \text { is a graph, } \mathcal{X} \subseteq\binom{E}{2}
$$

- in a topological graph $T \ldots \mathcal{X}_{T}=$ set of crossing pairs of edges
- T is a simple realization of (G, \mathcal{X}) if $\mathcal{X}_{T}=\mathcal{X}$
- AT-graph A is simply realizable if it has a simple realization
Example: $A=\left(K_{4},\{\{\{1,3\},\{2,4\}\}\}\right)$
simple realization of A :

$A=\left(K_{5}, \emptyset\right)$ is not simply realizable

Simple realizability

instance: AT-graph A
question: is A simply realizable?

Simple realizability

instance: AT-graph A
question: is A simply realizable?

Previously known:

Theorem: (Kratochvíl and Matoušek, 1989) Simple realizability of AT-graphs is NP-complete.
Theorem: (K., 2011)
Simple realizability of complete AT-graphs is in P.

Simple realizability

instance: AT-graph A
question: is A simply realizable?

Previously known:

Theorem: (Kratochvíl and Matoušek, 1989) Simple realizability of AT-graphs is NP-complete.
Theorem: (K., 2011)
Simple realizability of complete AT-graphs is in P.
"Unfortunately, the algorithm is of rather theoretical nature."

- P. Mutzel, 2008

Simple realizability

instance: AT-graph A
question: is A simply realizable?

Previously known:

Theorem: (Kratochvíl and Matoušek, 1989)
Simple realizability of AT-graphs is NP-complete.
Theorem: (K., 2011)
Simple realizability of complete AT-graphs is in P.
"Unfortunately, the algorithm is of rather theoretical nature." - P. Mutzel, 2008
"The proof in [..] only gives a highly complex testing procedure, but no description in terms of forbidden minors or crossing configurations."

- M. Chimani, 2011

Main result

def.: (H, \mathcal{Y}) is an AT-subgraph of (G, \mathcal{X}) if H is a subgraph of G and $\mathcal{Y}=\mathcal{X} \cap\binom{E(H)}{2}$

Main result

def.: (H, \mathcal{Y}) is an AT-subgraph of (G, \mathcal{X}) if H is a subgraph of G and $\mathcal{Y}=\mathcal{X} \cap\binom{E(H)}{2}$

Theorem 1: Every complete AT-graph that is not simply realizable has an AT-subgraph on at most six vertices that is not simply realizable.

Main result

def.: (H, \mathcal{Y}) is an AT-subgraph of (G, \mathcal{X}) if H is a subgraph of G and $\mathcal{Y}=\mathcal{X} \cap\binom{E(H)}{2}$

Theorem 1: Every complete AT-graph that is not simply realizable has an AT-subgraph on at most six vertices that is not simply realizable.

Theorem 2: There is a complete AT-graph A with six vertices such that all its induced AT-subgraphs with five vertices are simply realizable, but A itself is not.

Main result

def.: (H, \mathcal{Y}) is an AT-subgraph of (G, \mathcal{X}) if H is a subgraph of G and $\mathcal{Y}=\mathcal{X} \cap\binom{E(H)}{2}$

Theorem 1: Every complete AT-graph that is not simply realizable has an AT-subgraph on at most six vertices that is not simply realizable.

Theorem 2: There is a complete AT-graph A with six vertices such that all its induced AT-subgraphs with five vertices are simply realizable, but A itself is not.

- Theorem $1 \Rightarrow$ straightforward $O\left(n^{6}\right)$ algorithm (but does not find the drawing)

Main result

def.: (H, \mathcal{Y}) is an AT-subgraph of (G, \mathcal{X}) if H is a subgraph of G and $\mathcal{Y}=\mathcal{X} \cap\binom{E(H)}{2}$

Theorem 1: Every complete AT-graph that is not simply realizable has an AT-subgraph on at most six vertices that is not simply realizable.

Theorem 2: There is a complete AT-graph A with six vertices such that all its induced AT-subgraphs with five vertices are simply realizable, but A itself is not.

- Theorem $1 \Rightarrow$ straightforward $O\left(n^{6}\right)$ algorithm (but does not find the drawing)
- Ábrego, Aichholzer, Fernández-Merchant, Hackl, Pammer, Pilz, Ramos, Salazar and Vogtenhuber (2015) generated a list of simple drawings of K_{n} for $n \leq 9$

Proof of Theorem 1 (sketch)

Let $A=\left(K_{n}, \mathcal{X}\right)$ be a given complete AT-graph with vertex set $[n]=\{1,2, \ldots, n\}$.

Proof of Theorem 1 (sketch)

Let $A=\left(K_{n}, \mathcal{X}\right)$ be a given complete AT-graph with vertex set $[n]=\{1,2, \ldots, n\}$.
Main idea: take the previous "highly complex algorithm" and find a small obstruction every time it rejects the input.

Proof of Theorem 1 (sketch)

Let $A=\left(K_{n}, \mathcal{X}\right)$ be a given complete AT-graph with vertex set $[n]=\{1,2, \ldots, n\}$.
Main idea: take the previous "highly complex algorithm" and find a small obstruction every time it rejects the input.
three main steps:

1) computing the rotation system

Proof of Theorem 1 (sketch)

Let $A=\left(K_{n}, \mathcal{X}\right)$ be a given complete AT-graph with vertex set $[n]=\{1,2, \ldots, n\}$.
Main idea: take the previous "highly complex algorithm" and find a small obstruction every time it rejects the input.
three main steps:

1) computing the rotation system
2) computing the homotopy classes of edges with respect to a star

Proof of Theorem 1 (sketch)

Let $A=\left(K_{n}, \mathcal{X}\right)$ be a given complete AT-graph with vertex set $[n]=\{1,2, \ldots, n\}$.
Main idea: take the previous "highly complex algorithm" and find a small obstruction every time it rejects the input.
three main steps:

1) computing the rotation system
2) computing the homotopy classes of edges with respect to a star
3) computing the minimum crossing numbers of pairs of edges

Step 1: computing the rotation system

Step 1: computing the rotation system

AT-graph \leftrightarrow rotation system

Step 1: computing the rotation system

AT-graph \leftrightarrow rotation system

Step 1: computing the rotation system

AT-graph \leftrightarrow rotation system
1a) rotation systems of 5 -tuples (up to orientation)

Step 1: computing the rotation system

AT-graph \leftrightarrow rotation system
1a) rotation systems of 5 -tuples (up to orientation)
1b) orienting 5 -tuples (here 6 -tuples needed)

Step 1: computing the rotation system

AT-graph \leftrightarrow rotation system
1a) rotation systems of 5 -tuples (up to orientation)
1b) orienting 5 -tuples (here 6 -tuples needed)
1c) rotations of vertices

Step 1: computing the rotation system

AT-graph \leftrightarrow rotation system
1a) rotation systems of 5 -tuples (up to orientation)
1b) orienting 5 -tuples (here 6 -tuples needed)
1c) rotations of vertices
1d) rotations of crossings

Step 1: computing the rotation system

AT-graph \leftrightarrow rotation system
1a) rotation systems of 5 -tuples (up to orientation)
1b) orienting 5 -tuples (here 6 -tuples needed)
1c) rotations of vertices
1d) rotations of crossings
Ábrego et al. (pers. com.) verified that an abstract rotation system (ARS) of K_{9} is realizable if and only if the ARS of every 5 -tuple is realizable, and conjectured that this is true for any K_{n}.

Step 2: computing the homotopy classes of edges

- Fix a vertex v and a topological spanning star $S(v)$, drawn with the rotation computed in Step 1

Step 2: computing the homotopy classes of edges

- Fix a vertex v and a topological spanning star $S(v)$, drawn with the rotation computed in Step 1
- for every edge e not in $S(v)$, compute the order of crossings of e with the edges of $S(v)$.

Step 2: computing the homotopy classes of edges

- Fix a vertex v and a topological spanning star $S(v)$, drawn with the rotation computed in Step 1
- for every edge e not in $S(v)$, compute the order of crossings of e with the edges of $S(v)$.
- drill small holes around the vertices, fix the endpoints of the edges on the boundaries of the holes

Step 2: computing the homotopy classes of edges

- Fix a vertex v and a topological spanning star $S(v)$, drawn with the rotation computed in Step 1
- for every edge e not in $S(v)$, compute the order of crossings of e with the edges of $S(v)$.
- drill small holes around the vertices, fix the endpoints of the edges on the boundaries of the holes

Step 3: computing the minimum crossing numbers

$\operatorname{cr}(e, f)=$ minimum possible number of crossings of two curves from the homotopy classes of e and f

Step 3: computing the minimum crossing numbers

$\operatorname{cr}(e, f)=$ minimum possible number of crossings of two curves from the homotopy classes of e and f
$\operatorname{cr}(e)=$ minimum possible number of self-crossings of a curve from the homotopy class of e

Step 3: computing the minimum crossing numbers

$\operatorname{cr}(e, f)=$ minimum possible number of crossings of two curves from the homotopy classes of e and f
$\operatorname{cr}(e)=$ minimum possible number of self-crossings of a curve from the homotopy class of e
Fact: (follows e.g. from Hass-Scott, 1985) It is possible to pick a representative from the homotopy class of every edge so that in the resulting drawing, all the crossing numbers $\operatorname{cr}(e, f)$ and $\operatorname{cr}(e)$ are realized simultaneously.

Step 3: computing the minimum crossing numbers

$\operatorname{cr}(e, f)=$ minimum possible number of crossings of two curves from the homotopy classes of e and f
$\operatorname{cr}(e)=$ minimum possible number of self-crossings of a curve from the homotopy class of e
Fact: (follows e.g. from Hass-Scott, 1985) It is possible to pick a representative from the homotopy class of every edge so that in the resulting drawing, all the crossing numbers $\operatorname{cr}(e, f)$ and $\operatorname{cr}(e)$ are realized simultaneously.

We need to verify that

- $\operatorname{cr}(e)=0$,
- $\operatorname{cr}(e, f) \leq 1$, and
- $\operatorname{cr}(e, f)=1 \Leftrightarrow\{e, f\} \in \mathcal{X}$.

3a) characterization of the homotopy classes

3a) characterization of the homotopy classes

$3 b)$ parity of the crossing numbers (4- and 5-tuples)

3a) characterization of the homotopy classes

$3 b)$ parity of the crossing numbers (4- and 5-tuples)
3c) multiple crossings of adjacent edges (5 -tuples)

3a) characterization of the homotopy classes

$3 b)$ parity of the crossing numbers (4- and 5-tuples)
3c) multiple crossings of adjacent edges (5 -tuples)
3d) multiple crossings of independent edges (5-tuples)

Picture hanging without crossings

remove one nail:

