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2-Layer Drawings: Definition
2-layer drawing of a graph:
• each vertex is a point of one of two horizontal layers
• each edge is a straight-line segment that connects

vertices of different layers

Fact: G has a 2-layer drawing if and only if is bipartite
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Motivation:

• convey bipartite graphs
• building block of layered drawings



2-Layer Drawings: Evolution

Name: Caterpillar

Family: Planar
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Name: Caterpillar

Family: Planar

Eades et al.
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Non-planar drawings: minimizing the number of crossing edges in

a 2-layer drawing in NP-hard [Eades and Whitesides, 1994]

Subsequent papers:

• heuristics for crossing minimization

• restrictions on crossings (this paper)
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2-Layer Fan-planar Drawings: Definition

`1

`2

7 X

A drawing is fan-planar if there is no edge that crosses two
other independent edges [Bekos et al., 2014; Binucci et al., 2014;

Kaufmann and Ueckerdt, 2014]

A 2-layer fan-planar drawing is a 2-layer drawing that is also
fan-planar.



2-Layer Fan-planar Drawings: Application

Application: they can be used as a basis for generating
drawings with few edge crossings in a confluent drawing
style [Dickerson et al., 2005; Eppstein et al., 2007]

better readability



2-Layer Fan-planar Drawings: Notation

A 2-layer embedding is an equivalence class of 2-layer
drawings, described by a pair of linear orderings γ = (π1, π2)
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A 2-layer embedding is an equivalence class of 2-layer
drawings, described by a pair of linear orderings γ = (π1, π2)

A 2-layer fan-planar embedding γ is maximal if no edge can
be added without losing fan-planarity.
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2-Layer Fan-planar Drawings: Notation

1 2 3 4 5 6
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1 2 3 4 5 6 7 π1

π2

A 2-layer embedding is an equivalence class of 2-layer
drawings, described by a pair of linear orderings γ = (π1, π2)

A 2-layer fan-planar embedding γ is maximal if no edge can
be added without losing fan-planarity.



Characterization of biconnected

2-layer fan-planar graphs



Snake: Definition

Definition 1. A snake is recursively defined as follows:
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Snake: Definition
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Definition 1. A snake is recursively defined as follows:

• A complete bipartite graph K2,n (n ≥ 2) is a snake;

• The merger of two snakes G1 and G2 with respect to
edges e1 of G1 and e2 of G2 is a snake.
A vertex can be merged just once!
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• The merger of two snakes G1 and G2 with respect to
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Snake: Definition

Definition 1. A snake is recursively defined as follows:

• A complete bipartite graph K2,n (n ≥ 2) is a snake;

• The merger of two snakes G1 and G2 with respect to
edges e1 of G1 and e2 of G2 is a snake.
A vertex can be merged just once!
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Snake: Definition

Definition 1. A snake is recursively defined as follows:

• A complete bipartite graph K2,n (n ≥ 2) is a snake;

• The merger of two snakes G1 and G2 with respect to
edges e1 of G1 and e2 of G2 is a snake.
A vertex can be merged just once!



2-Layer Bicon. Fan-planar Graph ← Snake

Lemma 1 Every n-vertex snake admits a 2-layer fan-planar
embedding, which can be computed in O(n) time.
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2-Layer Bicon. Fan-planar Graph ← Snake

Lemma 1 Every n-vertex snake admits a 2-layer fan-planar
embedding, which can be computed in O(n) time.

Idea:
• Draw each K2,h independently
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2-Layer Bicon. Fan-planar Graph ← Snake

Lemma 1 Every n-vertex snake admits a 2-layer fan-planar
embedding, which can be computed in O(n) time.

`1

`2

Idea:
• Draw each K2,h independently
• Merge the drawings
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Lemma 2 Let G be biconnected graph. If G admits a
maximal 2-layer fan-planar embedding γ then G is a snake.
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Lemma 2 Let G be biconnected graph. If G admits a
maximal 2-layer fan-planar embedding γ then G is a snake.

Idea: Decompose γ by “splitting” the uncrossed edges
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2-Layer Bicon. Fan-planar Graph → Snake

Lemma 2 Let G be biconnected graph. If G admits a
maximal 2-layer fan-planar embedding γ then G is a snake.

`1

`2

Prove that each piece is a K2,n (for some n ≥ 2)

Idea: Decompose γ by “splitting” the uncrossed edges

piece



2-Layer Bicon. Fan-planar Graph → Snake

Lemma 2 Let G be biconnected graph. If G admits a
maximal 2-layer fan-planar embedding γ then G is a snake.

We prove that each piece P is a K2,n for some n ≥ 2.
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2-Layer Bicon. Fan-planar Graph → Snake

Lemma 2 Let G be biconnected graph. If G admits a
maximal 2-layer fan-planar embedding γ then G is a snake.

We prove that each piece P is a K2,n for some n ≥ 2.

Claim 1: Let (u, v) and (w, x) be a pair of crossing edges in γ[P ].
Then the edges (u, x) and (w, v) exist.
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Lemma 2 Let G be biconnected graph. If G admits a
maximal 2-layer fan-planar embedding γ then G is a snake.

We prove that each piece P is a K2,n for some n ≥ 2.
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Claim 1: Let (u, v) and (w, x) be a pair of crossing edges in γ[P ].
Then the edges (u, x) and (w, v) exist.

Consider the segment wv:
Case 1: No edge traverses wv



2-Layer Bicon. Fan-planar Graph → Snake

Lemma 2 Let G be biconnected graph. If G admits a
maximal 2-layer fan-planar embedding γ then G is a snake.

We prove that each piece P is a K2,n for some n ≥ 2.

Then due to maximality (w, v) exists

Consider the segment wv:
Case 1: No edge traverses wv

u w

`1

`2

Claim 1: Let (u, v) and (w, x) be a pair of crossing edges in γ[P ].
Then the edges (u, x) and (w, v) exist.



2-Layer Bicon. Fan-planar Graph → Snake

Lemma 2 Let G be biconnected graph. If G admits a
maximal 2-layer fan-planar embedding γ then G is a snake.

We prove that each piece P is a K2,n for some n ≥ 2.

v

w
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Claim 1: Let (u, v) and (w, x) be a pair of crossing edges in γ[P ].
Then the edges (u, x) and (w, v) exist.

Consider the segment wv:
Case 2: An edge e traverses wv

u



2-Layer Bicon. Fan-planar Graph → Snake

Lemma 2 Let G be biconnected graph. If G admits a
maximal 2-layer fan-planar embedding γ then G is a snake.

We prove that each piece P is a K2,n for some n ≥ 2.
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Claim 1: Let (u, v) and (w, x) be a pair of crossing edges in γ[P ].
Then the edges (u, x) and (w, v) exist.

Consider the segment wv:
Case 2: An edge e traverses wv

z

Due to fan-planarity, one end-vertex of e must be either u or x
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Lemma 2 Let G be biconnected graph. If G admits a
maximal 2-layer fan-planar embedding γ then G is a snake.

We prove that each piece P is a K2,n for some n ≥ 2.
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Claim 1: Let (u, v) and (w, x) be a pair of crossing edges in γ[P ].
Then the edges (u, x) and (w, v) exist.

Consider the segment wv:
Case 2: An edge e traverses wv

z

Any edge (y, v) is s.t. y = w, otherwise γ is not fan-planar

y
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2-Layer Bicon. Fan-planar Graph → Snake

Lemma 2 Let G be biconnected graph. If G admits a
maximal 2-layer fan-planar embedding γ then G is a snake.

We prove that each piece P is a K2,n for some n ≥ 2.
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Claim 2: If P ′ ⊆ P such that P ′ is a K2,n′ and P ′ contains the two
uncrossed edges of γ[P ], then P is a K2,n (n > n′)



2-Layer Bicon. Fan-planar Graph → Snake

Lemma 2 Let G be biconnected graph. If G admits a
maximal 2-layer fan-planar embedding γ then G is a snake.

We prove that each piece P is a K2,n for some n ≥ 2.

`1

`2

Claim 2: If P ′ ⊆ P such that P ′ is a K2,n′ and P ′ contains the two
uncrossed edges of γ[P ], then P is a K2,n (n > n′)

Suppose there is another vertex w on `1
Any edge (w, x) would violate fan-planarity

w

x



2-Layer Bicon. Fan-planar Graph → Snake

Lemma 2 Let G be biconnected graph. If G admits a
maximal 2-layer fan-planar embedding γ then G is a snake.

We prove that each piece P is a K2,n for some n ≥ 2.
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Consider now the rightmost vertices of γ[P ].
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Lemma 2 Let G be biconnected graph. If G admits a
maximal 2-layer fan-planar embedding γ then G is a snake.

We prove that each piece P is a K2,n for some n ≥ 2.
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Consider now the rightmost vertices of γ[P ].

They both have degree at least two.
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2-Layer Bicon. Fan-planar Graph → Snake

Lemma 2 Let G be biconnected graph. If G admits a
maximal 2-layer fan-planar embedding γ then G is a snake.

We prove that each piece P is a K2,n for some n ≥ 2.

Consider now the rightmost vertices of γ[P ].

They both have degree at least two.

By Claim 1 the two crossing edges induce a K2,2
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2-Layer Bicon. Fan-planar Graph → Snake

Lemma 2 Let G be biconnected graph. If G admits a
maximal 2-layer fan-planar embedding γ then G is a snake.

We prove that each piece P is a K2,n for some n ≥ 2.

If (x, z) is uncrossed, by Claim 2 the statemente follows.
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Consider now the rightmost vertices of γ[P ].

They both have degree at least two.

By Claim 1 the two crossing edges induce a K2,2



2-Layer Bicon. Fan-planar Graph → Snake

Lemma 2 Let G be biconnected graph. If G admits a
maximal 2-layer fan-planar embedding γ then G is a snake.

We prove that each piece P is a K2,n for some n ≥ 2.

Otherwise it is crossed by an edge having w or v as an end-vertex...
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Consider now the rightmost vertices of γ[P ].

They both have degree at least two.

By Claim 1 the two crossing edges induce a K2,2



2-Layer Bicon. Fan-planar Graph → Snake

Lemma 2 Let G be biconnected graph. If G admits a
maximal 2-layer fan-planar embedding γ then G is a snake.

We prove that each piece P is a K2,n for some n ≥ 2.
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Iterate until we hit the leftmost uncrossed edge of P (and then
apply Claim 2)
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Lemma 2 Let G be biconnected graph. If G admits a
maximal 2-layer fan-planar embedding γ then G is a snake.

We prove that each piece P is a K2,n for some n ≥ 2.

Iterate until we hit the leftmost uncrossed edge of P (and then
apply Claim 2)
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2-Layer Bicon. Fan-planar Graph ⇐⇒ Snake

Theorem 1 A biconnected graph G is 2-layer fan-planar if
and only if G is a spanning subgraph of a snake.

Lemma 1 + Lemma 2.



Testing biconnected graphs



Test for biconnected graphs

Theorem 2 Let G be a bipartite biconnected graph with n
vertices. There exists an O(n)-time algorithm that tests
whether G is 2-layer fan-planar, and that computes a 2-layer
fan-planar embedding of G in the positive case.
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vertices. There exists an O(n)-time algorithm that tests
whether G is 2-layer fan-planar, and that computes a 2-layer
fan-planar embedding of G in the positive case.

Idea: Check if G can be augmented to a snake by adding only edges.



Test for biconnected graphs

Theorem 2 Let G be a bipartite biconnected graph with n
vertices. There exists an O(n)-time algorithm that tests
whether G is 2-layer fan-planar, and that computes a 2-layer
fan-planar embedding of G in the positive case.

Idea: Check if G can be augmented to a snake by adding only edges.

Observation: snake = ladder + paths of length 2 inside inner faces



Test for biconnected graphs: Algorithm

Step 1: Contract each chain into a weighted edge.
Construct (if any) an outerplanar embedding of the graph.

Observation: Inner paths all have weight 1.

G

1
31 1

1 11

2

1

C(G)



Test for biconnected graphs: Algorithm

Step 2: Check that all edges with weight > 1 can be
embedded on the outer face.

Observation: If so, we found the outer edges of the ladder.
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Test for biconnected graphs: Algorithm

Step 3(a): Remove inner edges of weight 1, re-expand
outer edges.

H∗
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Test for biconnected graphs: Algorithm

Step 3(b): Check if the graph can be augmented to a
ladder (Di Giacomo et al., 2014).

H
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Test for biconnected graphs: Algorithm

Step 3(c): Check if the inner paths can be reinserted.

G∗
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fan-planar graphs



Stegosaurus: Definition

Definition 2. A stegosaurus is recursively defined as follows:
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A vertex can be merged just once!



Stegosaurus: Definition

Definition 2. A stegosaurus is recursively defined as follows:

• A snake is a stegosaurus;

• The merger of two stegosaurs G1 and G2 with respect
to vertices v1 of G1 and v2 of G2 is a stegosaurus.
A vertex can be merged just once!

merged vertex
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Definition 2. A stegosaurus is recursively defined as follows:

• A snake is a stegosaurus;

• The merger of two stegosaurs G1 and G2 with respect
to vertices v1 of G1 and v2 of G2 is a stegosaurus.
A vertex can be merged just once!

• The merger of a fan and a stegosaurs at a cut vertex is a
stegosaurus.



Stegosaurus: Definition

Definition 2. A stegosaurus is recursively defined as follows:

• A snake is a stegosaurus;

• The merger of two stegosaurs G1 and G2 with respect
to vertices v1 of G1 and v2 of G2 is a stegosaurus.
A vertex can be merged just once!

• The merger of a fan and a stegosaurs at a cut vertex is a
stegosaurus.

stumps



2-Layer Fan-Planar ← Stegosaurus

Lemma 3 Every stegosaurus has a 2-layer fan-planar
embedding.

`1

`2

Idea:
• Draw each snake independently
• Merge the drawings
• Draw the stumps



2-Layer Fan-Planar → Stegosaurus

Lemma 4 Let B be a block of a 2-layer fan-planar graph
G, and e an independent edge, i.e., none of its end-vertices
belongs to B. No edge of B can be crossed by e in any
2-layer fan-planar embedding of G.
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B contains a cycle which has a unique drawing.
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2-Layer Fan-Planar → Stegosaurus

Lemma 4 Let B be a block of a 2-layer fan-planar graph
G, and e an independent edge, i.e., none of its end-vertices
belongs to B. No edge of B can be crossed by e in any
2-layer fan-planar embedding of G.

B contains a cycle which has a unique drawing.

e will cross an edge of the cycle which is already crossed.
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2-Layer Fan-Planar → Stegosaurus

Lemma 4 Let B be a block of a 2-layer fan-planar graph
G, and e an independent edge, i.e., none of its end-vertices
belongs to B. No edge of B can be crossed by e in any
2-layer fan-planar embedding of G.

B contains a cycle which has a unique drawing.

e will cross an edge of the cycle which is already crossed.

Corollary 1 In a 2-layer fan-planar embedding, two blocks
cannot cross.

`1

`2

B1 B2

7

B3



2-Layer Fan-Planar → Stegosaurus

Blocks are “nicely” drawn (Corollary 1).
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Also, if G is maximal, then there is an embedding where no “stump”
is crossed (i.e., its degree one end-vertex is never within a block).
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2-Layer Fan-Planar → Stegosaurus

Blocks are “nicely” drawn (Corollary 1).

One can show that if G is maximal, then there are no bridges.

Also, if G is maximal, then there is an embedding where no “stump”
is crossed (i.e., its degree one end-vertex is never within a block).

Hence, if G is maximal, then each block is a maximal biconnected
2-layer fan-planar graph, i.e., a snake.

snakes
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2-Layer Fan-Planar → Stegosaurus

Blocks are “nicely” drawn (Corollary 1).

One can show that if G is maximal, then there are no bridges.

Also, if G is maximal, then there is an embedding where no “stump”
is crossed (i.e., its degree one end-vertex is never within a block).

Hence, if G is maximal, then each block is a maximal biconnected
2-layer fan-planar graph, i.e., a snake.

Lemma 5 Every maximal 2-layer fan-planar graph is a
stegosaurus.

`1

`2
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2-Layer Fan-Planar ⇐⇒ Stegosaurus

Theorem 3 A graph is 2-layer fan-planar if and only if it is
a subgraph of a stegosaurus.

Lemma 3 + Lemma 5.



Relationship with

2-layer RAC graphs



Biconnected Graphs

A biconnected graph has a 2-layer RAC embedding if and
only if it is a subgraph of a ladder, which is a subgraph of a
snake (Di Giacomo et al., 2014).

Corollary 2 The biconnected 2-layer RAC graphs are a
proper subclass of the biconnected 2-layer fan-planar graphs.

`1

`2

2-layer RAC drawing of a ladder



General Graphs

There exist infinitely many trees Tk (k ≥ 3) that are 2-layer
RAC but not 2-layer fan-planar.

u v

k edges

T3

k + 1 edges

3



General Graphs

There exist infinitely many trees Tk (k ≥ 3) that are 2-layer
RAC but not 2-layer fan-planar.

u v

Tk has a 2-layer RAC embedding.

k edges

T3

k + 1 edges

3

u

Tk is not a subgraph of a stegosaurus.

v



Open Problems



Future Work: How to Attack a Stegosaurus

Test for general graphs



Future Work: How to Attack a Stegosaurus

Heuristics for forbidden
configurations minimization

Test for general graphs



Future Work: How to Attack a Stegosaurus

Heuristics for forbidden
configurations minimization

Test for general graphs

Thank you!


