2-Layer Fan-planarity: From Caterpillar to Stegosaurus

Carla Binucci¹, Markus Chimani², Walter Didimo¹, Martin Gronemann³, Karsten Klein⁴, Jan Kratochvil⁵, <u>Fabrizio Montecchiani¹</u>, Ioannis G. Tollis⁶

¹Università degli Studi di Perugia, Italy
²Osnabrück University, Germany
³University of Cologne, Germany
⁴Monash University, Australia
⁵Charles University, Czech Republic
⁶University of Crete and FORTH, Greece

Thanks to BWGD 2015!

2-Layer Drawings: Definition

2-layer drawing of a graph:

- each vertex is a point of one of two horizontal layers
- each edge is a straight-line segment that connects vertices of different layers

Fact: G has a 2-layer drawing if and only if is bipartite

Motivation:

- convey bipartite graphs
- building block of layered drawings

PLANARITY AGE

1986

Name: Caterpillar Family: Planar Eades *et al.*

Name: Caterpillar Family: Planar Eades *et al.*

2-Layer Fan-planar Drawings: Definition

A drawing is *fan-planar* if there is no edge that crosses two other independent edges [Bekos *et al.*, 2014; Binucci *et al.*, 2014; Kaufmann and Ueckerdt, 2014]

A 2-layer fan-planar drawing is a 2-layer drawing that is also fan-planar.

2-Layer Fan-planar Drawings: Application

Application: they can be used as a basis for generating drawings with few edge crossings in a confluent drawing style [Dickerson *et al.*, 2005; Eppstein *et al.*, 2007]

better readability

2-Layer Fan-planar Drawings: Notation

A 2-layer embedding is an equivalence class of 2-layer drawings, described by a pair of linear orderings $\gamma = (\pi_1, \pi_2)$

2-Layer Fan-planar Drawings: Notation

A 2-layer embedding is an equivalence class of 2-layer drawings, described by a pair of linear orderings $\gamma = (\pi_1, \pi_2)$

A 2-layer fan-planar embedding γ is *maximal* if no edge can be added without losing fan-planarity.

2-Layer Fan-planar Drawings: Notation

A 2-layer embedding is an equivalence class of 2-layer drawings, described by a pair of linear orderings $\gamma = (\pi_1, \pi_2)$

A 2-layer fan-planar embedding γ is *maximal* if no edge can be added without losing fan-planarity.

Characterization of biconnected 2-layer fan-planar graphs

Definition 1. A *snake* is recursively defined as follows:

• A complete bipartite graph $K_{2,n}$ $(n \ge 2)$ is a snake;

- A complete bipartite graph $K_{2,n}$ $(n \ge 2)$ is a snake;
- The merger of two snakes G₁ and G₂ with respect to edges e₁ of G₁ and e₂ of G₂ is a snake.
 A vertex can be merged just once!

- A complete bipartite graph $K_{2,n}$ $(n \ge 2)$ is a snake;
- The merger of two snakes G₁ and G₂ with respect to edges e₁ of G₁ and e₂ of G₂ is a snake.
 A vertex can be merged just once!

- A complete bipartite graph $K_{2,n}$ $(n \ge 2)$ is a snake;
- The merger of two snakes G₁ and G₂ with respect to edges e₁ of G₁ and e₂ of G₂ is a snake.
 A vertex can be merged just once!

- A complete bipartite graph $K_{2,n}$ $(n \ge 2)$ is a snake;
- The merger of two snakes G₁ and G₂ with respect to edges e₁ of G₁ and e₂ of G₂ is a snake.
 A vertex can be merged just once!

$2\text{-Layer Bicon. Fan-planar Graph} \leftarrow \text{Snake}$

Lemma 1 Every *n*-vertex snake admits a 2-layer fan-planar embedding, which can be computed in O(n) time.

 ℓ_1

$2\text{-Layer Bicon. Fan-planar Graph} \leftarrow \text{Snake}$

Lemma 1 Every *n*-vertex snake admits a 2-layer fan-planar embedding, which can be computed in O(n) time.

Idea:

• Draw each $K_{2,h}$ independently

$2\text{-Layer Bicon. Fan-planar Graph} \leftarrow \text{Snake}$

Lemma 1 Every *n*-vertex snake admits a 2-layer fan-planar embedding, which can be computed in O(n) time.

Idea:

- Draw each $K_{2,h}$ independently
- Merge the drawings

Lemma 2 Let G be biconnected graph. If G admits a maximal 2-layer fan-planar embedding γ then G is a snake.

Lemma 2 Let G be biconnected graph. If G admits a maximal 2-layer fan-planar embedding γ then G is a snake.

Idea: Decompose γ by "splitting" the uncrossed edges

Lemma 2 Let G be biconnected graph. If G admits a maximal 2-layer fan-planar embedding γ then G is a snake.

Idea: Decompose γ by "splitting" the uncrossed edges

Prove that each piece is a $K_{2,n}$ (for some $n \ge 2$)

Lemma 2 Let G be biconnected graph. If G admits a maximal 2-layer fan-planar embedding γ then G is a snake.

We prove that each piece P is a $K_{2,n}$ for some $n \ge 2$.

Lemma 2 Let G be biconnected graph. If G admits a maximal 2-layer fan-planar embedding γ then G is a snake.

We prove that each piece P is a $K_{2,n}$ for some $n \ge 2$.

Claim 1: Let (u, v) and (w, x) be a pair of crossing edges in $\gamma[P]$. Then the edges (u, x) and (w, v) exist.

Lemma 2 Let G be biconnected graph. If G admits a maximal 2-layer fan-planar embedding γ then G is a snake.

We prove that each piece P is a $K_{2,n}$ for some $n \ge 2$.

Claim 1: Let (u, v) and (w, x) be a pair of crossing edges in $\gamma[P]$. Then the edges (u, x) and (w, v) exist.

Consider the segment \overline{wv} : **Case 1:** No edge traverses \overline{wv}

Lemma 2 Let G be biconnected graph. If G admits a maximal 2-layer fan-planar embedding γ then G is a snake.

We prove that each piece P is a $K_{2,n}$ for some $n \ge 2$.

Claim 1: Let (u, v) and (w, x) be a pair of crossing edges in $\gamma[P]$. Then the edges (u, x) and (w, v) exist.

Consider the segment \overline{wv} :

Case 1: No edge traverses \overline{wv}

Then due to maximality (w, v) exists

Lemma 2 Let G be biconnected graph. If G admits a maximal 2-layer fan-planar embedding γ then G is a snake.

We prove that each piece P is a $K_{2,n}$ for some $n \ge 2$.

Claim 1: Let (u, v) and (w, x) be a pair of crossing edges in $\gamma[P]$. Then the edges (u, x) and (w, v) exist.

Consider the segment \overline{wv} : **Case 2:** An edge *e* traverses \overline{wv}

Lemma 2 Let G be biconnected graph. If G admits a maximal 2-layer fan-planar embedding γ then G is a snake.

We prove that each piece P is a $K_{2,n}$ for some $n \ge 2$.

Claim 1: Let (u, v) and (w, x) be a pair of crossing edges in $\gamma[P]$. Then the edges (u, x) and (w, v) exist.

Consider the segment \overline{wv} :

Case 2: An edge e traverses \overline{wv}

Due to fan-planarity, one end-vertex of $e \mbox{ must}$ be either $u \mbox{ or } x$

Lemma 2 Let G be biconnected graph. If G admits a maximal 2-layer fan-planar embedding γ then G is a snake.

We prove that each piece P is a $K_{2,n}$ for some $n \ge 2$.

Claim 1: Let (u, v) and (w, x) be a pair of crossing edges in $\gamma[P]$. Then the edges (u, x) and (w, v) exist.

Consider the segment \overline{wv} :

Case 2: An edge e traverses \overline{wv}

Lemma 2 Let G be biconnected graph. If G admits a maximal 2-layer fan-planar embedding γ then G is a snake.

We prove that each piece P is a $K_{2,n}$ for some $n \ge 2$.

Claim 1: Let (u, v) and (w, x) be a pair of crossing edges in $\gamma[P]$. Then the edges (u, x) and (w, v) exist.

Consider the segment \overline{wv} :

Case 2: An edge e traverses \overline{wv}

Lemma 2 Let G be biconnected graph. If G admits a maximal 2-layer fan-planar embedding γ then G is a snake.

We prove that each piece P is a $K_{2,n}$ for some $n \ge 2$.

Claim 1: Let (u, v) and (w, x) be a pair of crossing edges in $\gamma[P]$. Then the edges (u, x) and (w, v) exist.

Consider the segment \overline{wv} :

Case 2: An edge e traverses \overline{wv}

Lemma 2 Let G be biconnected graph. If G admits a maximal 2-layer fan-planar embedding γ then G is a snake.

We prove that each piece P is a $K_{2,n}$ for some $n \ge 2$.

Claim 1: Let (u, v) and (w, x) be a pair of crossing edges in $\gamma[P]$. Then the edges (u, x) and (w, v) exist.

Consider the segment \overline{wv} :

Case 2: An edge e traverses \overline{wv}

Lemma 2 Let G be biconnected graph. If G admits a maximal 2-layer fan-planar embedding γ then G is a snake.

We prove that each piece P is a $K_{2,n}$ for some $n \ge 2$.

Claim 2: If $P' \subseteq P$ such that P' is a $K_{2,n'}$ and P' contains the two uncrossed edges of $\gamma[P]$, then P is a $K_{2,n}$ (n > n')

Lemma 2 Let G be biconnected graph. If G admits a maximal 2-layer fan-planar embedding γ then G is a snake.

We prove that each piece P is a $K_{2,n}$ for some $n \ge 2$.

Claim 2: If $P' \subseteq P$ such that P' is a $K_{2,n'}$ and P' contains the two uncrossed edges of $\gamma[P]$, then P is a $K_{2,n}$ (n > n')

Suppose there is another vertex w on ℓ_1

Any edge (w, x) would violate fan-planarity

Lemma 2 Let G be biconnected graph. If G admits a maximal 2-layer fan-planar embedding γ then G is a snake.

We prove that each piece P is a $K_{2,n}$ for some $n \ge 2$.

Consider now the rightmost vertices of $\gamma[P]$.

Lemma 2 Let G be biconnected graph. If G admits a maximal 2-layer fan-planar embedding γ then G is a snake.

We prove that each piece P is a $K_{2,n}$ for some $n \ge 2$.

Consider now the rightmost vertices of $\gamma[P]$.

They both have degree at least two.

Lemma 2 Let G be biconnected graph. If G admits a maximal 2-layer fan-planar embedding γ then G is a snake.

We prove that each piece P is a $K_{2,n}$ for some $n \ge 2$.

Consider now the rightmost vertices of $\gamma[P]$.

They both have degree at least two.

By Claim 1 the two crossing edges induce a $K_{2,2}$

Lemma 2 Let G be biconnected graph. If G admits a maximal 2-layer fan-planar embedding γ then G is a snake.

We prove that each piece P is a $K_{2,n}$ for some $n \ge 2$.

Consider now the rightmost vertices of $\gamma[P]$.

They both have degree at least two.

By Claim 1 the two crossing edges induce a $K_{2,2}$

If (x, z) is uncrossed, by Claim 2 the statemente follows.

Lemma 2 Let G be biconnected graph. If G admits a maximal 2-layer fan-planar embedding γ then G is a snake.

We prove that each piece P is a $K_{2,n}$ for some $n \ge 2$.

Consider now the rightmost vertices of $\gamma[P]$.

They both have degree at least two.

By Claim 1 the two crossing edges induce a $K_{2,2}$

Otherwise it is crossed by an edge having w or v as an end-vertex...

Lemma 2 Let G be biconnected graph. If G admits a maximal 2-layer fan-planar embedding γ then G is a snake.

We prove that each piece P is a $K_{2,n}$ for some $n \ge 2$.

Iterate until we hit the leftmost uncrossed edge of P (and then apply Claim 2)

Lemma 2 Let G be biconnected graph. If G admits a maximal 2-layer fan-planar embedding γ then G is a snake.

We prove that each piece P is a $K_{2,n}$ for some $n \ge 2$.

Iterate until we hit the leftmost uncrossed edge of P (and then apply Claim 2)

2-Layer Bicon. Fan-planar Graph \iff Snake

Theorem 1 A biconnected graph G is 2-layer fan-planar if and only if G is a spanning subgraph of a snake.

Lemma 1 + Lemma 2.

Testing biconnected graphs

Test for biconnected graphs

Theorem 2 Let G be a bipartite biconnected graph with n vertices. There exists an O(n)-time algorithm that tests whether G is 2-layer fan-planar, and that computes a 2-layer fan-planar embedding of G in the positive case.

Test for biconnected graphs

Theorem 2 Let G be a bipartite biconnected graph with n vertices. There exists an O(n)-time algorithm that tests whether G is 2-layer fan-planar, and that computes a 2-layer fan-planar embedding of G in the positive case.

Idea: Check if G can be augmented to a snake by adding only edges.

Test for biconnected graphs

Theorem 2 Let G be a bipartite biconnected graph with n vertices. There exists an O(n)-time algorithm that tests whether G is 2-layer fan-planar, and that computes a 2-layer fan-planar embedding of G in the positive case.

Idea: Check if G can be augmented to a snake by adding only edges. Observation: snake = ladder + paths of length 2 inside inner faces

Step 1: Contract each chain into a weighted edge. Construct (if any) an outerplanar embedding of the graph.

Observation: Inner paths all have weight 1.

Step 2: Check that all edges with weight > 1 can be embedded on the outer face.

Observation: If so, we found the outer edges of the ladder.

Step 3(a): Remove inner edges of weight 1, re-expand outer edges.

Step 3(b): Check if the graph can be augmented to a ladder (Di Giacomo *et al.*, 2014).

Step 3(c): Check if the inner paths can be reinserted.

Characterization of 2-layer fan-planar graphs

Definition 2. A *stegosaurus* is recursively defined as follows:

• A snake is a stegosaurus;

- A snake is a stegosaurus;
- The merger of two stegosaurs G₁ and G₂ with respect to vertices v₁ of G₁ and v₂ of G₂ is a stegosaurus.
 A vertex can be merged just once!

- A snake is a stegosaurus;
- The merger of two stegosaurs G₁ and G₂ with respect to vertices v₁ of G₁ and v₂ of G₂ is a stegosaurus.
 A vertex can be merged just once!

- A snake is a stegosaurus;
- The merger of two stegosaurs G₁ and G₂ with respect to vertices v₁ of G₁ and v₂ of G₂ is a stegosaurus.
 A vertex can be merged just once!

- A snake is a stegosaurus;
- The merger of two stegosaurs G₁ and G₂ with respect to vertices v₁ of G₁ and v₂ of G₂ is a stegosaurus.
 A vertex can be merged just once!

- A snake is a stegosaurus;
- The merger of two stegosaurs G₁ and G₂ with respect to vertices v₁ of G₁ and v₂ of G₂ is a stegosaurus.
 A vertex can be merged just once!
- The merger of a fan and a stegosaurs at a cut vertex is a stegosaurus.

- A snake is a stegosaurus;
- The merger of two stegosaurs G₁ and G₂ with respect to vertices v₁ of G₁ and v₂ of G₂ is a stegosaurus.
 A vertex can be merged just once!
- The merger of a fan and a stegosaurs at a cut vertex is a stegosaurus.

Lemma 3 Every stegosaurus has a 2-layer fan-planar embedding.

Idea:

- Draw each snake independently
- Merge the drawings
- Draw the stumps

Lemma 4 Let B be a block of a 2-layer fan-planar graph G, and e an independent edge, i.e., none of its end-vertices belongs to B. No edge of B can be crossed by e in any 2-layer fan-planar embedding of G.

Lemma 4 Let B be a block of a 2-layer fan-planar graph G, and e an independent edge, i.e., none of its end-vertices belongs to B. No edge of B can be crossed by e in any 2-layer fan-planar embedding of G.

 ${\cal B}$ contains a cycle which has a unique drawing.

Lemma 4 Let B be a block of a 2-layer fan-planar graph G, and e an independent edge, i.e., none of its end-vertices belongs to B. No edge of B can be crossed by e in any 2-layer fan-planar embedding of G.

B contains a cycle which has a unique drawing. e will cross an edge of the cycle which is already crossed.

Lemma 4 Let B be a block of a 2-layer fan-planar graph G, and e an independent edge, i.e., none of its end-vertices belongs to B. No edge of B can be crossed by e in any 2-layer fan-planar embedding of G.

B contains a cycle which has a unique drawing. e will cross an edge of the cycle which is already crossed.

Corollary 1 In a 2-layer fan-planar embedding, two blocks cannot cross.

Blocks are "nicely" drawn (Corollary 1).

Blocks are "nicely" drawn (Corollary 1).

One can show that if G is maximal, then there are no bridges.

Blocks are "nicely" drawn (Corollary 1).

One can show that if G is maximal, then there are no bridges. Also, if G is maximal, then there is an embedding where no "stump" is crossed (i.e., its degree one end-vertex is never within a block).

$2\text{-Layer Fan-Planar} \rightarrow \text{Stegosaurus}$

Blocks are "nicely" drawn (Corollary 1).

One can show that if G is maximal, then there are no bridges. Also, if G is maximal, then there is an embedding where no "stump" is crossed (i.e., its degree one end-vertex is never within a block). Hence, if G is maximal, then each block is a maximal biconnected 2-layer fan-planar graph, i.e., a snake.

$2\text{-Layer Fan-Planar} \rightarrow \text{Stegosaurus}$

Blocks are "nicely" drawn (Corollary 1).

One can show that if G is maximal, then there are no bridges. Also, if G is maximal, then there is an embedding where no "stump" is crossed (i.e., its degree one end-vertex is never within a block). Hence, if G is maximal, then each block is a maximal biconnected 2-layer fan-planar graph, i.e., a snake.

Lemma 5 Every maximal 2-layer fan-planar graph is a stegosaurus.

2-Layer Fan-Planar \iff Stegosaurus

Theorem 3 A graph is 2-layer fan-planar if and only if it is a subgraph of a stegosaurus.

Lemma 3 + Lemma 5.

Relationship with 2-layer RAC graphs

Biconnected Graphs

A biconnected graph has a 2-layer RAC embedding if and only if it is a subgraph of a ladder, which is a subgraph of a snake (Di Giacomo *et al.*, 2014).

Corollary 2 The biconnected 2-layer RAC graphs are a proper subclass of the biconnected 2-layer fan-planar graphs.

General Graphs

There exist infinitely many trees T_k $(k \ge 3)$ that are 2-layer RAC but not 2-layer fan-planar.

General Graphs

There exist infinitely many trees T_k $(k \ge 3)$ that are 2-layer RAC but not 2-layer fan-planar.

 T_k is not a subgraph of a stegosaurus.

Open Problems

Future Work: How to Attack a Stegosaurus

Test for general graphs

Future Work: How to Attack a Stegosaurus

Test for general graphs

Heuristics for forbidden configurations minimization

Future Work: How to Attack a Stegosaurus

Test for general graphs

Heuristics for forbidden configurations minimization

Thank you!

