Maximizing the Degree of (Geometric) Thickness-*t* Regular Graphs

Christian A. Duncan

Department of Mathematics and Computer Science Quinnipiac University

Graph Drawing, 2015

Thickness

Definition

The *thickness* $\Theta(G)$ of a graph *G* is the minimum number of planar subgraphs whose union forms *G*. The edges of these subgraphs form a partitioning of E(G). For convenience, we identify each partition with a unique color.

・ロット (雪) ・ (日) ・ (日)

Thickness

Definition

The *thickness* $\Theta(G)$ of a graph *G* is the minimum number of planar subgraphs whose union forms *G*. The edges of these subgraphs form a partitioning of E(G). For convenience, we identify each partition with a unique color.

Thickness

Definition

The *thickness* $\Theta(G)$ of a graph *G* is the minimum number of planar subgraphs whose union forms *G*. The edges of these subgraphs form a partitioning of E(G). For convenience, we identify each partition with a unique color.

・ロット (雪) ・ (日) ・ (日)

Geometric Thickness

Definition

The *geometric thickness* of G, $\overline{\Theta}(G)$, is the smallest integer t such that there is a *straight-line drawing* $\Gamma(G)$ whose edges can be colored with t colors such that no two edges with the same color intersect, except at the endpoints. That is, each coloring (layer) is a planar drawing.

ヘロト ヘポト ヘヨト ヘヨト

Geometric Thickness

Definition

The *geometric thickness* of G, $\overline{\Theta}(G)$, is the smallest integer t such that there is a *straight-line drawing* $\Gamma(G)$ whose edges can be colored with t colors such that no two edges with the same color intersect, except at the endpoints. That is, each coloring (layer) is a planar drawing.

Geometric Thickness

Definition

The *geometric thickness* of G, $\overline{\Theta}(G)$, is the smallest integer t such that there is a *straight-line drawing* $\Gamma(G)$ whose edges can be colored with t colors such that no two edges with the same color intersect, except at the endpoints. That is, each coloring (layer) is a planar drawing.

イロト イポト イヨト イヨト

Motivation

- Durocher et al. [2013*] explored the relationship between colorability and thickness.
- Coloring: Fewest number of colors needed to color vertices of a graph so that no two adj. vertices have same color.
- Trivial to color a k-degenerate graph with k + 1 colors
 - Delete a degree-k vertex v.
 - 2 Color the remaining graph (with k + 1 colors).
 - Insert v back using one of the available colors
- *k*-regular graphs are *k*-degenerate graph.

Question

For (geometric) thickness-*t* graphs, what is the maximum *k*-regular graph possible?

Motivation

- Durocher et al. [2013*] explored the relationship between colorability and thickness.
- Coloring: Fewest number of colors needed to color vertices of a graph so that no two adj. vertices have same color.
- Trivial to color a k-degenerate graph with k + 1 colors
 - Delete a degree-k vertex v.
 - 2 Color the remaining graph (with k + 1 colors).
 - Insert v back using one of the available colors
- *k*-regular graphs are *k*-degenerate graph.

Question

For (geometric) thickness-*t* graphs, what is the maximum *k*-regular graph possible?

Motivation

- Durocher et al. [2013*] explored the relationship between colorability and thickness.
- Coloring: Fewest number of colors needed to color vertices of a graph so that no two adj. vertices have same color.
- Trivial to color a k-degenerate graph with k + 1 colors
 - Delete a degree-k vertex v.
 - 2 Color the remaining graph (with k + 1 colors).
 - Insert v back using one of the available colors
- *k*-regular graphs are *k*-degenerate graph.

Question

For (geometric) thickness-*t* graphs, what is the maximum *k*-regular graph possible?

• k = 5 for planar graphs

- There exist 5-regular planar graphs
- $k \le 6t 1$ for (geometric) thickness-*t* graphs
 - Based on edge counting
 - $|E| \le (3n-6)t$
 - Average degree = $\frac{2|E|}{n} \leq \frac{(6n-12)t}{n} = 6t \frac{12t}{n}$
 - Must be at least one node with degree < 6t
- *k* = 11 for thickness-2 graphs [Durocher et al., 2013*]

Question

For *t* > 2, is *k* < 6*t* − 1?

- k = 5 for planar graphs
 - There exist 5-regular planar graphs
- $k \le 6t 1$ for (geometric) thickness-*t* graphs
 - Based on edge counting
 - $|E| \le (3n-6)t$
 - Average degree $=\frac{2|E|}{n} \leq \frac{(6n-12)t}{n} = 6t \frac{12t}{n}$
 - Must be at least one node with degree < 6t

• *k* = 11 for thickness-2 graphs [Durocher et al., 2013*]

Question

For *t* > 2, is *k* < 6*t* − 1?

- k = 5 for planar graphs
 - There exist 5-regular planar graphs
- $k \le 6t 1$ for (geometric) thickness-*t* graphs
 - Based on edge counting
 - $|E| \le (3n-6)t$
 - Average degree $=\frac{2|E|}{n} \leq \frac{(6n-12)t}{n} = 6t \frac{12t}{n}$
 - Must be at least one node with degree < 6t
- k = 11 for thickness-2 graphs [Durocher et al., 2013*]

Question

For *t* > 2, is *k* < 6*t* − 1?

- k = 5 for planar graphs
 - There exist 5-regular planar graphs
- $k \le 6t 1$ for (geometric) thickness-*t* graphs
 - Based on edge counting
 - $|E| \le (3n-6)t$
 - Average degree $=\frac{2|E|}{n} \leq \frac{(6n-12)t}{n} = 6t \frac{12t}{n}$
 - Must be at least one node with degree < 6t
- k = 11 for thickness-2 graphs [Durocher et al., 2013*]

Question

For t > 2, is k < 6t - 1?

Our Results

Theorem

There exist (6t - 1)-regular thickness-t graphs. Thus, we show that k = 6t - 1 for thickness-t graphs.

Theorem

There exist 5t-regular graphs with geom. thickness at most t. For t < 7, the geometric thickness is exactly t.

Our Results

Theorem

There exist (6t - 1)-regular thickness-t graphs. Thus, we show that k = 6t - 1 for thickness-t graphs.

Theorem

There exist 5t-regular graphs with geom. thickness at most t. For t < 7, the geometric thickness is exactly t.

(6t - 1)-regular Thickness-*t* Graphs (Overview)

- Construct a planar graph G having 48(t 1) degree-6 vertices and 48 degree-5 vertices.
- $\mathcal{G}_{C} \rightarrow C = 48t$ disjoint copies of \mathcal{G}
- Create t layers of G_C on same vertex set permuting the vertices to ensure every vertex has degree 5 in exactly one layer and no edge is repeated in different layers
 - $G \leftarrow$ Union of *t* layers of \mathcal{G}_C
 - Every vertex in *G* has degree 6*t* 1
 - $\Theta(G) \leq t$ because every layer is planar
 - $\Theta(G) \ge t$ because 2|E| = (6t 1)n

t layers too many edges

Constructing \mathcal{G}_{C}

■ 16(t − 1) nested triangles

- 6 degree-4 vertices
- Rest are degree-6 vertices
- Add vertices to get desired degrees. Observe symmetry
- deg. 4 verts now have deg. 6
- All new vertices have deg. 5.
- Repeat process for the inner triangle.
- Total 3(16(t 1)) + 2(24) = 48t vertices
 48(t 1) are degree-6
 48 are degree-5
- Create C = 48t disjoint copies of G

Open Questions

- 16(t − 1) nested triangles
 - 6 degree-4 vertices
 - Rest are degree-6 vertices
- Add vertices to get desired degrees. Observe symmetry
- deg. 4 verts now have deg. 6
- All new vertices have deg. 5.
- Repeat process for the inner triangle.
- Total 3(16(t 1)) + 2(24) = 48t vertices
 48(t 1) are degree-6
 48 are degree-5
- Create C = 48t disjoint copies of G

Open Questions

- 16(t − 1) nested triangles
 - 6 degree-4 vertices
 - Rest are degree-6 vertices
- Add vertices to get desired degrees. Observe symmetry
- deg. 4 verts now have deg. 6
- All new vertices have deg. 5.
- Repeat process for the inner triangle.
- Total 3(16(t 1)) + 2(24) = 48t vertices
 48(t 1) are degree-6
 48 are degree-5
- Create C = 48t disjoint copies of G

- 16(t − 1) nested triangles
 - 6 degree-4 vertices
 - Rest are degree-6 vertices
- Add vertices to get desired degrees. Observe symmetry
- deg. 4 verts now have deg. 6
- All new vertices have deg. 5.
- Repeat process for the inner triangle.
- Total 3(16(t 1)) + 2(24) = 48t vertices
 48(t 1) are degree-6
 48 are degree-5
- Create C = 48t disjoint copies of G

- 16(t − 1) nested triangles
 - 6 degree-4 vertices
 - Rest are degree-6 vertices
- Add vertices to get desired degrees. Observe symmetry
- deg. 4 verts now have deg. 6
- All new vertices have deg. 5.
- Repeat process for the inner triangle.
- Total 3(16(t 1)) + 2(24) = 48t vertices 48(t - 1) are degree-6 48 are degree-5
- Create C = 48t disjoint copies of G

- 16(t − 1) nested triangles
 - 6 degree-4 vertices
 - Rest are degree-6 vertices
- Add vertices to get desired degrees. Observe symmetry
- deg. 4 verts now have deg. 6
- All new vertices have deg. 5.
- Repeat process for the inner triangle.
- Total 3(16(t 1)) + 2(24) = 48t vertices 48(t - 1) are degree-6 48 are degree-5
- Create C = 48t disjoint copies of G

- 16(t − 1) nested triangles
 - 6 degree-4 vertices
 - Rest are degree-6 vertices
- Add vertices to get desired degrees. Observe symmetry
- deg. 4 verts now have deg. 6
- All new vertices have deg. 5.
- Repeat process for the inner triangle.
- Total 3(16(t 1)) + 2(24) = 48t vertices 48(t - 1) are degree-6 48 are degree-5
- Create C = 48t disjoint copies of G

- 16(t − 1) nested triangles
 - 6 degree-4 vertices
 - Rest are degree-6 vertices
- Add vertices to get desired degrees. Observe symmetry
- deg. 4 verts now have deg. 6
- All new vertices have deg. 5.
- Repeat process for the inner triangle.
- Total 3(16(t 1)) + 2(24) = 48t vertices 48(t - 1) are degree-6 48 are degree-5
- Create C = 48t disjoint copies of G

- 16(t − 1) nested triangles
 - 6 degree-4 vertices
 - Rest are degree-6 vertices
- Add vertices to get desired degrees. Observe symmetry
- deg. 4 verts now have deg. 6
- All new vertices have deg. 5.
- Repeat process for the inner triangle.
- Total 3(16(t 1)) + 2(24) = 48t vertices 48(t - 1) are degree-6 48 are degree-5
- Create C = 48t disjoint copies of G

Constructing $\mathcal{G}_{\mathcal{C}}$

- 16(t − 1) nested triangles
 - 6 degree-4 vertices
 - Rest are degree-6 vertices
- Add vertices to get desired degrees. Observe symmetry
- deg. 4 verts now have deg. 6
- All new vertices have deg. 5.
- Repeat process for the inner triangle.
- Total 3(16(t 1)) + 2(24) = 48t vertices
 48(t 1) are degree-6
 48 are degree-5
- Create C = 48t disjoint copies of G

Constructing \mathcal{G}_{C}

- 16(t − 1) nested triangles
 - 6 degree-4 vertices
 - Rest are degree-6 vertices
- Add vertices to get desired degrees. Observe symmetry
- deg. 4 verts now have deg. 6
- All new vertices have deg. 5.
- Repeat process for the inner triangle.
- Total 3(16(t 1)) + 2(24) = 48t vertices 48(t - 1) are degree-6 48 are degree-5

• Create C = 48t disjoint copies of G

Constructing \mathcal{G}_C

- 16(t − 1) nested triangles
 - 6 degree-4 vertices
 - Rest are degree-6 vertices
- Add vertices to get desired degrees. Observe symmetry
- deg. 4 verts now have deg. 6
- All new vertices have deg. 5.
- Repeat process for the inner triangle.
- Total 3(16(t 1)) + 2(24) = 48t vertices 48(t - 1) are degree-6 48 are degree-5
- Create C = 48t disjoint copies of G

・ ロ ト ・ 雪 ト ・ 目 ト ・

Now the fun part. Merging multiple layers of this graph...

Merging Multiple Layers

• Suppose this is \mathcal{G}_C .

- Create multiple layers with each layer having a different permutation of the same vertices.
- π_i(v) = permuted vertex in G_C of layer i, 0 ≤ i < t

・ロット (雪) (日) (日)

• Example:

• Strategy: Do the same for *t* layers of *G_C*. With certain conditions...

Merging Multiple Layers

- Suppose this is \mathcal{G}_C .
- Create multiple layers with each layer having a different permutation of the same vertices.
- $\pi_i(v) =$ permuted vertex in \mathcal{G}_C of layer *i*, 0 $\leq i < t$

• Example:

・ロット (雪) (日) (日)

ъ

• Strategy: Do the same for *t* layers of \mathcal{G}_C . With certain conditions...

Merging Multiple Layers

- Suppose this is \mathcal{G}_C .
- Create multiple layers with each layer having a different permutation of the same vertices.
- *π_i*(*ν*) = permuted vertex in *G_C* of layer *i*, 0 ≤ *i* < *t*

• Example:

・ロット (雪) (日) (日)

• Strategy: Do the same for *t* layers of \mathcal{G}_C . With certain conditions...

Merging Multiple Layers

- Suppose this is G_C.
- Create multiple layers with each layer having a different permutation of the same vertices.
- *π_i*(*ν*) = permuted vertex in *G_C* of layer *i*, 0 ≤ *i* < *t*
- Example:

・ コ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

• Strategy: Do the same for *t* layers of *G_C*. With certain conditions...

Merging Multiple Layers

- Suppose this is G_C.
- Create multiple layers with each layer having a different permutation of the same vertices.
- *π_i*(*ν*) = permuted vertex in *G_C* of layer *i*, 0 ≤ *i* < *t*

 Example: π₀(1) = 1,

・ロット (雪) (日) (日)

ъ

• Strategy: Do the same for *t* layers of *G_C*. With certain conditions...

Merging Multiple Layers

- Suppose this is G_C.
- Create multiple layers with each layer having a different permutation of the same vertices.
- *π_i*(*ν*) = permuted vertex in *G_C* of layer *i*, 0 ≤ *i* < *t*

Example:

 $\pi_0(1) = 1, \, \pi_1(1) = 4$

• Strategy: Do the same for *t* layers of \mathcal{G}_C . With certain conditions...

・ロット (雪) ・ (日) ・ (日)

ъ

Merging Multiple Layers

- Suppose this is G_C.
- Create multiple layers with each layer having a different permutation of the same vertices.
- $\pi_i(v) =$ permuted vertex in \mathcal{G}_C of layer *i*, 0 $\leq i < t$
- Example:

$$\pi_0(1) = 1, \, \pi_1(1) = 4$$

 $\pi_0(3) = 3,$

• Strategy: Do the same for *t* layers of *G_C*. With certain conditions...

Merging Multiple Layers

- Suppose this is G_C.
- Create multiple layers with each layer having a different permutation of the same vertices.
- $\pi_i(v) =$ permuted vertex in \mathcal{G}_C of layer *i*, 0 $\leq i < t$

• Example:

$$\pi_0(1) = 1, \pi_1(1) = 4$$

 $\pi_0(3) = 3, \pi_1(3) = 7$

• Strategy: Do the same for *t* layers of \mathcal{G}_C . With certain conditions...

・ ロ ト ・ 雪 ト ・ 目 ト

Merging Multiple Layers

- Suppose this is G_C.
- Create multiple layers with each layer having a different permutation of the same vertices.
- $\pi_i(v) =$ permuted vertex in \mathcal{G}_C of layer *i*, 0 $\leq i < t$
- Example:

$$\begin{array}{l} \pi_0(1) = 1, \, \pi_1(1) = 4 \\ \pi_0(3) = 3, \, \pi_1(3) = 7 \\ (1,3) \in E(G) \text{ because} \\ (\pi_1(1), \pi_1(3)) = (4,7) \in E(\mathcal{G}_C) \end{array}$$

Strategy: Do the same for t layers of G_C.
 With certain conditions...

Merging Multiple Layers

- Suppose this is \mathcal{G}_C .
- Create multiple layers with each layer having a different permutation of the same vertices.
- $\pi_i(v) =$ permuted vertex in \mathcal{G}_C of layer *i*, 0 $\leq i < t$
- Example:

$$\begin{array}{l} \pi_0(1) = 1, \, \pi_1(1) = 4 \\ \pi_0(3) = 3, \, \pi_1(3) = 7 \\ (1,3) \in E(G) \text{ because} \\ (\pi_1(1), \pi_1(3)) = (4,7) \in E(\mathcal{G}_{\mathcal{C}}) \end{array}$$

• Strategy: Do the same for t layers of \mathcal{G}_C . With certain conditions...

Merging Multiple Layers

- Suppose this is \mathcal{G}_C .
- Create multiple layers with each layer having a different permutation of the same vertices.
- $\pi_i(v) =$ permuted vertex in \mathcal{G}_C of layer *i*, 0 $\leq i < t$
- Example:

$$\begin{aligned} \pi_0(1) &= 1, \, \pi_1(1) = 4 \\ \pi_0(3) &= 3, \, \pi_1(3) = 7 \\ (1,3) &\in E(G) \text{ because} \\ (\pi_1(1), \pi_1(3)) &= (4,7) \in E(\mathcal{G}_C) \end{aligned}$$

• Strategy: Do the same for *t* layers of *G_C*. With certain conditions...

Open Questions

Merging Multiple Layers of $\mathcal{G}_{\mathcal{C}}$ to form G

Conditions

Want to create permutations $\pi_i(v)$ such that:

- Every vertex gets mapped to a degree 5 vertex exactly once.
- No duplicate edges: no edge is in more than one layer.

Conditions 1 and 2 (and our construction of \mathcal{G}_C) guarantee that G is (6t - 1)-regular.

To complete our mapping, it helps to group portions of the triangles from G into *t* levels, ℓ .

- $\ell = 0$ is set of outer/inner (degree 5) vertices
- Other t 1 levels are groups of 16 triangles in G
- Each level has 48 vertices $\rightarrow t$ levels.

To complete our mapping, it helps to group portions of the triangles from G into *t* levels, ℓ .

- $\ell = 0$ is set of outer/inner (degree 5) vertices
- Other t 1 levels are groups of 16 triangles in G
- Each level has 48 vertices $\rightarrow t$ levels.

To complete our mapping, it helps to group portions of the triangles from G into *t* levels, ℓ .

- $\ell = 0$ is set of outer/inner (degree 5) vertices
- Other t 1 levels are groups of 16 triangles in G
- Each level has 48 vertices $\rightarrow t$ levels.

Label vertices of G_C as ρ_{a,ℓ,c}

- a is an ordering of vertices within one level of G
- ℓ is the level (0 $\leq \ell < t$)
- c is the cluster ($0 \le c < C$)
- Label vertices of *G* such that $\pi_0(v_{a,\ell,c}) = \rho_{a,\ell,c}$.

General Mapping

 $\pi_i(V_{a,\ell,c}) = \rho_{a,(\ell+i)} \mod t, (c+i) \mod C$

- Label vertices of G_C as ρ_{a,ℓ,c}
- a is an ordering of vertices within one level of G
- ℓ is the level (0 $\leq \ell < t$)
- c is the cluster ($0 \le c < C$)
- Label vertices of *G* such that $\pi_0(v_{a,\ell,c}) = \rho_{a,\ell,c}$.

General Mapping

 $\pi_i(V_{a,\ell,c}) = \rho_{a,(\ell+i)} \mod t, (c+i) \mod C$

Open Questions

Vertex Mapping

- Label vertices of G_C as p_{a,ℓ,c}
- a is an ordering of vertices within one level of G
- ℓ is the level (0 $\leq \ell < t$)
- c is the cluster ($0 \le c < C$)
- Label vertices of *G* such that $\pi_0(v_{a,\ell,c}) = \rho_{a,\ell,c}$.

General Mapping

 $\pi_i(V_{a,\ell,c}) = \rho_{a,(\ell+i)} \mod t, (c+i) \mod C$

- Label vertices of G_C as p_{a,ℓ,c}
- a is an ordering of vertices within one level of G
- ℓ is the level (0 $\leq \ell < t$)
- *c* is the cluster (0 ≤ *c* < *C*)
- Label vertices of *G* such that $\pi_0(v_{a,\ell,c}) = \rho_{a,\ell,c}$.

General Mapping

 $\pi_i(V_{a,\ell,c}) =
ho_{a,(\ell+i)} \mod t, (c+i) \mod C$

- Label vertices of G_C as p_{a,ℓ,c}
- a is an ordering of vertices within one level of G
- ℓ is the level (0 $\leq \ell < t$)
- *c* is the cluster (0 ≤ *c* < *C*)
- Label vertices of G such that π₀(v_{a,ℓ,c}) = ρ_{a,ℓ,c}.

General Mapping

 $\pi_i(V_{a,\ell,c}) = \rho_{a,(\ell+i)} \mod t, (c+i) \mod C$

- Label vertices of G_C as p_{a,ℓ,c}
- a is an ordering of vertices within one level of G
- ℓ is the level (0 $\leq \ell < t$)
- *c* is the cluster (0 ≤ *c* < *C*)
- Label vertices of G such that $\pi_0(v_{a,\ell,c}) = \rho_{a,\ell,c}$.

General Mapping

$$\pi_i(\mathbf{V}_{\mathbf{a},\ell,\mathbf{c}}) = \rho_{\mathbf{a},(\ell+i) \mod t,(\mathbf{c}+i) \mod \mathbf{C}}$$

Open Questions

(6t - 1)-regular Thickness-t Graphs

General Mapping

$$\pi_i(\mathbf{V}_{\mathbf{a},\ell,\mathbf{c}}) =
ho_{\mathbf{a},(\ell+i) \bmod t,(\mathbf{c}+i) \bmod C}$$

Theorem

G is a (6t - 1)-regular thickness-t graph

Proof.

(6t-1)-regular Thickness-t Graphs

General Mapping

$$\pi_i(\mathbf{V}_{\mathbf{a},\ell,\mathbf{c}}) =
ho_{\mathbf{a},(\ell+i) \bmod t,(\mathbf{c}+i) \bmod C}$$

Theorem

G is a (6t - 1)-regular thickness-t graph

Proof.

(6t - 1)-regular Thickness-*t* Graphs

General Mapping

$$\pi_i(\mathbf{V}_{\mathbf{a},\ell,\mathbf{c}}) =
ho_{\mathbf{a},(\ell+i) \mod t,(\mathbf{c}+i) \mod C}$$

Theorem

G is a (6t - 1)-regular thickness-t graph

Proof.

Condition 1: Exactly one degree-5 assignment:

- ρ_{·,0,·} are the only degree-5 vertices
- $\pi_i(v_{a,\ell,c}) = \rho_{\cdot,0,\cdot}$ only when $(\ell + i) \mod t \equiv 0$.

(6t - 1)-regular Thickness-*t* Graphs

General Mapping

$$\pi_i(\mathbf{V}_{\mathbf{a},\ell,\mathbf{c}}) = \rho_{\mathbf{a},(\ell+i) \bmod t,(\mathbf{c}+i) \bmod C}$$

Proof.

Condition 2: No duplicate edges:

- Suppose $v_{a,\ell,c}$ and $v_{a',\ell',c'}$ share edge in layers *i*, *j* with *i* < *j*.
- \nexists edges in \mathcal{G}_C between two nodes with same *a*
- \nexists edges in \mathcal{G}_C between two nodes with different *c*
- So, their "assignment" in *i*-th layer must have same *c* value.
- That is, $c + ai \equiv c' + a'i \mod C$ (and similarly for *j*)
- Therefore, $a(j i) \equiv a'(j i) \mod C$.
- But $0 \le a, a' < 48, j i < t$ and C = 48t
- So, only holds when j = i $\Rightarrow \Leftarrow$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

(6t - 1)-regular Thickness-*t* Graphs

General Mapping

$$\pi_i(\mathbf{V}_{\mathbf{a},\ell,\mathbf{c}}) = \rho_{\mathbf{a},(\ell+i) \bmod t,(\mathbf{c}+i) \bmod C}$$

Proof.

- Suppose v_{a,ℓ,c} and v_{a',ℓ',c'} share edge in layers i, j with i < j.</p>
- \nexists edges in \mathcal{G}_C between two nodes with same a
- \nexists edges in \mathcal{G}_C between two nodes with different *c*
- So, their "assignment" in *i*-th layer must have same *c* value.
- That is, $c + ai \equiv c' + a'i \mod C$ (and similarly for *j*)
- Therefore, $a(j i) \equiv a'(j i) \mod C$.
- But $0 \le a, a' < 48, j i < t$ and C = 48t
- So, only holds when j = i $\Rightarrow \Leftarrow$

(6t - 1)-regular Thickness-*t* Graphs

General Mapping

$$\pi_i(\mathbf{V}_{\mathbf{a},\ell,\mathbf{c}}) =
ho_{\mathbf{a},(\ell+i) \bmod t,(\mathbf{c}+i) \bmod C}$$

Proof.

- Suppose v_{a,ℓ,c} and v_{a',ℓ',c'} share edge in layers i, j with i < j.</p>
- \nexists edges in \mathcal{G}_C between two nodes with same *a*
- \nexists edges in \mathcal{G}_{C} between two nodes with different c
- So, their "assignment" in *i*-th layer must have same *c* value.
- That is, $c + ai \equiv c' + a'i \mod C$ (and similarly for *j*)
- Therefore, $a(j i) \equiv a'(j i) \mod C$.
- But 0 ≤ *a*, *a*′ < 48, *j* − *i* < *t* and *C* = 48*t*
- So, only holds when j = i $\Rightarrow \Leftarrow$

(6t - 1)-regular Thickness-*t* Graphs

General Mapping

$$\pi_i(\mathbf{V}_{\mathbf{a},\ell,\mathbf{c}}) =
ho_{\mathbf{a},(\ell+i) \bmod t,(\mathbf{c}+i) \bmod C}$$

Proof.

- Suppose v_{a,ℓ,c} and v_{a',ℓ',c'} share edge in layers i, j with i < j.</p>
- \nexists edges in \mathcal{G}_C between two nodes with same *a*
- \nexists edges in \mathcal{G}_{C} between two nodes with different c
- So, their "assignment" in *i*-th layer must have same *c* value.
- That is, $c + ai \equiv c' + a'i \mod C$ (and similarly for *j*)
- Therefore, $a(j-i) \equiv a'(j-i) \mod C$.
- But 0 ≤ *a*, *a*′ < 48, *j* − *i* < *t* and *C* = 48*t*
- So, only holds when j = i $\Rightarrow \Leftarrow$

(6t - 1)-regular Thickness-*t* Graphs

General Mapping

$$\pi_i(\mathbf{V}_{\mathbf{a},\ell,\mathbf{c}}) =
ho_{\mathbf{a},(\ell+i) \bmod t,(\mathbf{c}+i) \bmod C}$$

Proof.

- Suppose v_{a,ℓ,c} and v_{a',ℓ',c'} share edge in layers i, j with i < j.</p>
- \nexists edges in \mathcal{G}_C between two nodes with same *a*
- \nexists edges in \mathcal{G}_{C} between two nodes with different c
- So, their "assignment" in *i*-th layer must have same *c* value.
- That is, $c + ai \equiv c' + a'i \mod C$ (and similarly for *j*)
- Therefore, $a(j-i) \equiv a'(j-i) \mod C$.
- But 0 ≤ a, a' < 48, j − i < t and C = 48t</p>
- So, only holds when j = i $\Rightarrow \Leftarrow$

What about geometric thickness-*t* graphs?

Definition

The Cartesian product of two graphs: $G = G_1 \Box G_2$

•
$$V(G) = V(G_1) \times V(G_2)$$

• $((v_1, v_2), (u_1, u_2)) \in E(G)$ if and only if

• $v_1 = u_1$ and $(v_2, u_2) \in E(G_2)$, or vice versa

Definition

The Cartesian product of two graphs: $G = G_1 \Box G_2$

•
$$V(G) = V(G_1) \times V(G_2)$$

• $((v_1, v_2), (u_1, u_2)) \in E(G)$ if and only if

• $v_1 = u_1$ and $(v_2, u_2) \in E(G_2)$, or vice versa

Cartesian Product

Definition

The Cartesian product of two graphs: $G = G_1 \Box G_2$

•
$$V(G) = V(G_1) \times V(G_2)$$

•
$$((v_1, v_2), (u_1, u_2)) \in E(G)$$
 if and only if

• $v_1 = u_1$ and $(v_2, u_2) \in E(G_2)$, or vice versa

Cartesian Product

Lemma

 $\overline{\Theta}(G_1 \Box G_2) \leq \overline{\Theta}(G_1) + \overline{\Theta}(G_2)$ The geometric thickness of the cartesian product is (at most) the sum of the geometric thicknesses of the two graphs.

Proof.

By picture...

Cartesian Product

Lemma

 $\bar{\Theta}(G_1 \Box G_2) \leq \bar{\Theta}(G_1) + \bar{\Theta}(G_2)$ The geometric thickness of the cartesian product is (at most) the sum of the geometric thicknesses of the two graphs.

Proof.

By picture...

Open Questions

Cartesian Product

• • • • • • •									•
•····									•
•		 							
•									·····•
•									
•									·····•
		 	·						
••••••									
•				 					
•									•
•									•
•									•
•		 							
·····									
••••••									•
	•								

・ロト ・聞ト ・ヨト ・ヨト

æ

Cartesian Product

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

Open Questions

5-regular planar graph G_5

5t-regular graphs

Theorem

There exist 5t-regular graphs with geom. thickness at most t.

Proof.

- $\mathbb{G} = G_5 \square G_5 \square \cdots \square G_5$ (t 1 times)
- $\bar{\Theta}(\mathbb{G}) \leq t$
- Every vertex has degree 5t
- *Exactly t* for t < 7

Edge counting

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

• If $\bar{\Theta}(\mathbb{G}) < t$, then 5tn < 6(t-1)n (or t > 6)

э

Open Questions

Conclusions and Open Questions

Theorem

There exist (6t - 1)-regular thickness-t graphs.

Question #1

What is the smallest (6t - 1)-regular graph of thickness t? Our example had $(48t)^2$ vertices and we know that $|V| \ge 12t$. Durocher et al. present a 32-vertex thickness-two graph.

Open Questions

Conclusions and Open Questions

Theorem

There exist (6t - 1)-regular thickness-t graphs.

Question #1

What is the smallest (6t - 1)-regular graph of thickness t? Our example had $(48t)^2$ vertices and we know that $|V| \ge 12t$. Durocher et al. present a 32-vertex thickness-two graph.

Conclusions and Open Questions

Theorem

There exist 5t-regular graphs with geom. thickness at most t.

Question #2

What is the largest *k* such that there exists a *k*-regular graph of geom. thickness *t*? Is there an 11-regular graph with geom. thickness 2?

Question #3

Does the graph \mathbb{G} have geom. thickness *exactly t* for all $t \in \mathbb{Z}^+$? We know it is true for t < 7.

Conclusions and Open Questions

Theorem

There exist 5t-regular graphs with geom. thickness at most t.

Question #2

What is the largest *k* such that there exists a *k*-regular graph of geom. thickness *t*? Is there an 11-regular graph with geom. thickness 2?

Question #3

Does the graph \mathbb{G} have geom. thickness *exactly t* for all $t \in \mathbb{Z}^+$? We know it is true for t < 7.

Open Questions

Conclusions and Open Questions

Theorem

There exist 5t-regular graphs with geom. thickness at most t.

Question #2

What is the largest *k* such that there exists a *k*-regular graph of geom. thickness *t*? Is there an 11-regular graph with geom. thickness 2?

Question #3

Does the graph \mathbb{G} have geom. thickness *exactly t* for all $t \in \mathbb{Z}^+$? We know it is true for t < 7.

Thank You!

