Maximizing the Degree of (Geometric) Thickness- t Regular Graphs

Christian A. Duncan

Department of Mathematics and Computer Science
Quinnipiac University
Graph Drawing, 2015

Thickness

Definition

The thickness $\Theta(G)$ of a graph G is the minimum number of planar subgraphs whose union forms G. The edges of these subgraphs form a partitioning of $E(G)$. For convenience, we identify each partition with a unique color.

Thickness

Definition

The thickness $\Theta(G)$ of a graph G is the minimum number of planar subgraphs whose union forms G. The edges of these subgraphs form a partitioning of $E(G)$. For convenience, we identify each partition with a unique color.

Thickness

Definition

The thickness $\Theta(G)$ of a graph G is the minimum number of planar subgraphs whose union forms G. The edges of these subgraphs form a partitioning of $E(G)$. For convenience, we identify each partition with a unique color.

Geometric Thickness

Definition

The geometric thickness of $G, \bar{\Theta}(G)$, is the smallest integer t such that there is a straight-line drawing $\Gamma(G)$ whose edges can be colored with t colors such that no two edges with the same color intersect, except at the endpoints. That is, each coloring (layer) is a planar drawing.

Geometric Thickness

Definition

The geometric thickness of $G, \bar{\Theta}(G)$, is the smallest integer t such that there is a straight-line drawing $\Gamma(G)$ whose edges can be colored with t colors such that no two edges with the same color intersect, except at the endpoints. That is, each coloring (layer) is a planar drawing.

Geometric Thickness

Definition

The geometric thickness of $G, \bar{\Theta}(G)$, is the smallest integer t such that there is a straight-line drawing $\Gamma(G)$ whose edges can be colored with t colors such that no two edges with the same color intersect, except at the endpoints. That is, each coloring (layer) is a planar drawing.

Motivation

- Durocher et al. [2013*] explored the relationship between colorability and thickness.
- Coloring: Fewest number of colors needed to color vertices of a graph so that no two adj. vertices have same color.
- Trivial to color a k-degenerate graph with $k+1$ colors
(1) Delete a degree- k vertex v
(2) Color the remaining graph (with $k+1$ colors)
(O Insert v back using one of the available colors
- k-regular graphs are k-degenerate graph.

Question
 For (geometric) thickness- t graphs, what is the maximum k-regular graph possible?

Motivation

- Durocher et al. [2013*] explored the relationship between colorability and thickness.
- Coloring: Fewest number of colors needed to color vertices of a graph so that no two adj. vertices have same color.
- Trivial to color a k-degenerate graph with $k+1$ colors
(1) Delete a degree- k vertex v.
(2) Color the remaining graph (with $k+1$ colors).
(3) Insert v back using one of the available colors
- k-regular graphs are k-degenerate graph.

Motivation

- Durocher et al. [2013*] explored the relationship between colorability and thickness.
- Coloring: Fewest number of colors needed to color vertices of a graph so that no two adj. vertices have same color.
- Trivial to color a k-degenerate graph with $k+1$ colors
(1) Delete a degree- k vertex v.
(2) Color the remaining graph (with $k+1$ colors).
(3) Insert v back using one of the available colors
- k-regular graphs are k-degenerate graph.

Question

For (geometric) thickness- t graphs, what is the maximum k-regular graph possible?

Previous Bounds

- $k=5$ for planar graphs
- There exist 5-regular planar graphs
- $k \leq 6 t-1$ for (geometric) thickness- t graphs
- Based on edge counting
- $|E| \leq(3 n-6) t$
- Average degree $=\frac{2|E|}{n} \leq \frac{(0 n-12) t}{n}=6 t-\frac{12 t}{n}$
- Must be at least one node with degree $<6 t$
- $k=11$ for thickness-2 graphs [Durocher et al., 2013*]

Question

For $t>2$, is $k<6 t-1$?

Previous Bounds

- $k=5$ for planar graphs
- There exist 5-regular planar graphs
- $k \leq 6 t-1$ for (geometric) thickness- t graphs
- Based on edge counting
- $|E| \leq(3 n-6) t$
- Average degree $=\frac{2|E|}{n} \leq \frac{(6 n-12) t}{n}=6 t-\frac{12 t}{n}$
- Must be at least one node with degree $<6 t$
- $k=11$ for thickness-2 graphs [Durocher et al., 2013*]

Previous Bounds

- $k=5$ for planar graphs
- There exist 5-regular planar graphs
- $k \leq 6 t-1$ for (geometric) thickness- t graphs
- Based on edge counting
- $|E| \leq(3 n-6) t$
- Average degree $=\frac{2|E|}{n} \leq \frac{(6 n-12) t}{n}=6 t-\frac{12 t}{n}$
- Must be at least one node with degree $<6 t$
- $k=11$ for thickness-2 graphs [Durocher et al., 2013*]

Previous Bounds

- $k=5$ for planar graphs
- There exist 5-regular planar graphs
- $k \leq 6 t-1$ for (geometric) thickness- t graphs
- Based on edge counting
- $|E| \leq(3 n-6) t$
- Average degree $=\frac{2|E|}{n} \leq \frac{(6 n-12) t}{n}=6 t-\frac{12 t}{n}$
- Must be at least one node with degree $<6 t$
- $k=11$ for thickness-2 graphs [Durocher et al., 2013*]

Question

For $t>2$, is $k<6 t-1$?

Our Results

Theorem

There exist $(6 t-1)$-regular thickness- t graphs.
Thus, we show that $k=6 t-1$ for thickness- t graphs.

Theorem
There exist $5 t$-regular graphs with geom. thickness at most t For $t<7$, the geometric thickness is exactly t.

Our Results

Theorem

There exist $(6 t-1)$-regular thickness-t graphs.
Thus, we show that $k=6 t-1$ for thickness- t graphs.

Theorem

There exist 5t-regular graphs with geom. thickness at most t. For $t<7$, the geometric thickness is exactly t.

($6 t-1$)-regular Thickness- t Graphs (Overview)

- Construct a planar graph \mathcal{G} having 48($t-1$) degree-6 vertices and 48 degree- 5 vertices.
- $\mathcal{G}_{C} \rightarrow C=48 t$ disjoint copies of \mathcal{G}
- Create t layers of \mathcal{G}_{C} on same vertex set permuting the vertices to ensure every vertex has degree 5 in exactly one layer and no edge is repeated in different layers
- $G \leftarrow$ Union of t layers of \mathcal{G}_{C}
- Every vertex in G has degree $6 t-1$
- $\Theta(G) \leq t$ because every layer is planar
t layers
- $\Theta(G) \geq t$ because $2|E|=(6 t-1) n$

Constructing \mathcal{G}_{C}

- 16($t-1$) nested triangles
- 6 degree-4 vertices
- Rest are degree-6 vertices
- Add vertices to get desired degrees. Observe symmetry
- deg. 4 verts now have deg. 6
- All new vertices have deg. 5 .
- Repeat process for the inner triangle.
- Total $3(16(t-1))+2(24)=48 t$ vertices
 $48(t-1)$ are degree-6
48 are degree-5
- Create $C=48 t$ disjoint copies of \mathcal{G}

Constructing \mathcal{G}_{C}

- 16($t-1$) nested triangles
- 6 degree -4 vertices
- Rest are degree-6 vertices

Add vertices to get desired degrees.
Observe symmetry

- deg. 4 vert now have deg. 6
- All new vertices have deg. 5 .
- Repeat process for the inner triangle.
- Total 3(16(t-1))+2(24)=48t vertices

48($t-1$) are degree-6
48 are degree -5

- Create $C=48 t$ disjoint copies of G

Constructing \mathcal{G}_{C}

- 16($t-1)$ nested triangles
- 6 degree -4 vertices
- Rest are degree-6 vertices

Add vertices to get desired degrees.
Observe symmetry

- dea. 4 vert now have deg. 6
- All new vertices have deg. 5 .
- Repeat process for the inner triangle.
- Total 3(16(t-1))+2(24)=48t vertices

48($t-1$) are degree-6

48 are degree -5

- Create $C=48 t$ disjoint copies of G

Constructing \mathcal{G}_{C}

- 16($t-1$) nested triangles
- 6 degree -4 vertices
- Rest are degree-6 vertices
- Add vertices to get desired degrees. Observe symmetry
- deg. 4 verts now have deg. 6
- All new vertices have deg. 5 .
- Repeat process for the inner triangle.
- Total $3(16(t-1))+2(24)=48 t$ vertices $48(t-1)$ are degree-6

48 are degree -5

- Create $C=48$ t disjoint copies of \mathcal{G}

Constructing \mathcal{G}_{C}

- 16($t-1$) nested triangles
- 6 degree-4 vertices
- Rest are degree-6 vertices
- Add vertices to get desired degrees. Observe symmetry
- deg. 4 verts now have deg. 6
- All new vertices have deg. 5 .
- Repeat process for the inner triangle.
- Total $3(16(t-1))+2(24)=48 t$ vertices 48($t-1$) are degree-6
48 are degree-5
- Create $C=48 t$ disjoint copies of G

Constructing \mathcal{G}_{C}

- 16($t-1$) nested triangles
- 6 degree-4 vertices
- Rest are degree-6 vertices
- Add vertices to get desired degrees. Observe symmetry
- deg. 4 verts now have deg. 6
- All new vertices have deg. 5 .
- Repeat process for the inner triangle.
- Total $3(16(t-1))+2(24)=48 t$ vertices $48(t-1)$ are degree-6
48 are degree-5
- Create $C=48 t$ disjoint copies of \mathcal{G}

Constructing \mathcal{G}_{C}

- 16($t-1$) nested triangles
- 6 degree-4 vertices
- Rest are degree-6 vertices
- Add vertices to get desired degrees. Observe symmetry
- deg. 4 verts now have deg. 6
- All new vertices have deg. 5 .
- Repeat process for the inner triangle.
- Total $3(16(t-1))+2(24)=48 t$ vertices $48(t-1)$ are degree-6
48 are degree-5
- Create $C=48 t$ disjoint copies of \mathcal{G}

Constructing \mathcal{G}_{C}

- 16($t-1$) nested triangles
- 6 degree-4 vertices
- Rest are degree-6 vertices
- Add vertices to get desired degrees. Observe symmetry
- deg. 4 verts now have deg. 6
- All new vertices have deg. 5 .
- Repeat process for the inner triangle.
- Total $3(16(t-1))+2(24)=48 t$ vertices $48(t-1)$ are degree-6
48 are degree-5
- Create $C=48 t$ disjoint copies of \mathcal{G}

Constructing \mathcal{G}_{C}

- 16($t-1$) nested triangles
- 6 degree -4 vertices
- Rest are degree-6 vertices
- Add vertices to get desired degrees. Observe symmetry
- deg. 4 vert now have deg. 6
- All new vertices have deg. 5 .
- Repeat process for the inner triangle. - Total $3(16(t-1))+2(24)=48 t$ vertices $48(t-1)$ are degrees
 48 are degree-5

Constructing \mathcal{G}_{C}

- 16($t-1)$ nested triangles
- 6 degree -4 vertices
- Rest are degree-6 vertices
- Add vertices to get desired degrees. Observe symmetry
- deg. 4 vert now have deg. 6
- All new vertices have deg. 5.
- Repeat process for the inner triangle.
- Total $3(16(t-1))+2(24)=48 t$ vertices $48(t-1)$ are degree-6

48 are degree -5

- Create $C=48$ t disjoint copies of \mathcal{G}

Constructing \mathcal{G}_{C}

- 16($t-1$) nested triangles
- 6 degree-4 vertices
- Rest are degree-6 vertices
- Add vertices to get desired degrees. Observe symmetry
- deg. 4 verts now have deg. 6
- All new vertices have deg. 5.
- Repeat process for the inner triangle.
- Total $3(16(t-1))+2(24)=48 t$ vertices $48(t-1)$ are degree-6
 48 are degree- 5
- Create $C=48 t$ disjoint copies of \mathcal{G}

Constructing \mathcal{G}_{C}

- 16($t-1$) nested triangles
- 6 degree-4 vertices
- Rest are degree-6 vertices
- Add vertices to get desired degrees. Observe symmetry
- deg. 4 verts now have deg. 6
- All new vertices have deg. 5.
- Repeat process for the inner triangle.
- Total $3(16(t-1))+2(24)=48 t$ vertices $48(t-1)$ are degree-6
 48 are degree- 5
- Create $C=48 t$ disjoint copies of \mathcal{G}

Now the fun part. Merging multiple layers of this graph...

Merging Multiple Layers

- Suppose this is \mathcal{G}_{C}.
- Create multiple layers with each layer having a different permutation of the same vertices.
- $\pi_{i}(v)=$ permuted vertex in \mathcal{G}_{C} of layer i,

- Example:
- Strategy: Do the same for t layers of \mathcal{G}_{C}. With certain conditions...

Merging Multiple Layers

- Suppose this is \mathcal{G}_{C}.
- Create multiple layers with each layer having a different permutation of the same vertices.
permuted vertex in \mathcal{G}_{C} of layer i,

- Strategy: Do the same for t layers of \mathcal{G}_{C}. With certain conditions...

Merging Multiple Layers

- Suppose this is \mathcal{G}_{C}.
- Create multiple layers with each layer having a different permutation of the same vertices.
- $\pi_{i}(v)=$ permuted vertex in \mathcal{G}_{C} of layer i, $0 \leq i<t$

- Strategy: Do the same for t layers of \mathcal{G}_{C}. With certain conditions...

Merging Multiple Layers

- Suppose this is \mathcal{G}_{C}.
- Create multiple layers with each layer having a different permutation of the same vertices.
- $\pi_{i}(v)=$ permuted vertex in \mathcal{G}_{C} of layer i, $0 \leq i<t$
- Example:

- Strategy: Do the same for t layers of \mathcal{G}_{C}. With certain conditions...

Merging Multiple Layers

- Suppose this is \mathcal{G}_{C}.
- Create multiple layers with each layer having a different permutation of the same vertices.
- $\pi_{i}(v)=$ permuted vertex in \mathcal{G}_{C} of layer i, $0 \leq i<t$
- Example:
$\pi_{0}(1)=1$,

- Strategy: Do the same for t layers of \mathcal{G}_{C}.

With certain conditions...

Merging Multiple Layers

- Suppose this is \mathcal{G}_{C}.
- Create multiple layers with each layer having a different permutation of the same vertices.
- $\pi_{i}(v)=$ permuted vertex in \mathcal{G}_{C} of layer i, $0 \leq i<t$
- Example:

$$
\pi_{0}(1)=1, \pi_{1}(1)=4
$$

layer 1

- Strategy: Do the same for t layers of \mathcal{G}_{C}.

With certain conditions...

Merging Multiple Layers

- Suppose this is \mathcal{G}_{C}.
- Create multiple layers with each layer having a different permutation of the same vertices.
- $\pi_{i}(v)=$ permuted vertex in \mathcal{G}_{C} of layer i, $0 \leq i<t$
- Example:
$\pi_{0}(1)=1, \pi_{1}(1)=4$
$\pi_{0}(3)=3$,

- Strategy: Do the same for t layers of \mathcal{G}_{C}. With certain conditions...

Merging Multiple Layers

- Suppose this is \mathcal{G}_{C}.
- Create multiple layers with each layer having a different permutation of the same vertices.
- $\pi_{i}(v)=$ permuted vertex in \mathcal{G}_{C} of layer i, $0 \leq i<t$
- Example:
$\pi_{0}(1)=1, \pi_{1}(1)=4$
$\pi_{0}(3)=3, \pi_{1}(3)=7$

- Strategy: Do the same for t layers of \mathcal{G}_{C}.

With certain conditions...

Merging Multiple Layers

- Suppose this is \mathcal{G}_{C}.
- Create multiple layers with each layer having a different permutation of the same vertices.
- $\pi_{i}(v)=$ permuted vertex in \mathcal{G}_{C} of layer i, $0 \leq i<t$
- Example:

$$
\pi_{0}(1)=1, \pi_{1}(1)=4
$$

$$
\pi_{0}(3)=3, \pi_{1}(3)=7
$$

$(1,3) \in E(G)$ because $\left(\pi_{1}(1), \pi_{1}(3)\right)=(4,7) \in E\left(\mathcal{G}_{C}\right)$

Merging Multiple Layers

- Suppose this is \mathcal{G}_{C}.
- Create multiple layers with each layer having a different permutation of the same vertices.
- $\pi_{i}(v)=$ permuted vertex in \mathcal{G}_{C} of layer i, $0 \leq i<t$
- Example:
$\pi_{0}(1)=1, \pi_{1}(1)=4$
$\pi_{0}(3)=3, \pi_{1}(3)=7$
$(1,3) \in E(G)$ because
$\left(\pi_{1}(1), \pi_{1}(3)\right)=(4,7) \in E\left(\mathcal{G}_{C}\right)$

Merging Multiple Layers

- Suppose this is \mathcal{G}_{C}.
- Create multiple layers with each layer having a different permutation of the same vertices.
- $\pi_{i}(v)=$ permuted vertex in \mathcal{G}_{C} of layer i, $0 \leq i<t$
- Example:
$\pi_{0}(1)=1, \pi_{1}(1)=4$
$\pi_{0}(3)=3, \pi_{1}(3)=7$
$(1,3) \in E(G)$ because
$\left(\pi_{1}(1), \pi_{1}(3)\right)=(4,7) \in E\left(\mathcal{G}_{C}\right)$
- Strategy: Do the same for t layers of \mathcal{G}_{C}. With certain conditions...

Merging Multiple Layers of \mathcal{G}_{C} to form G

Conditions

Want to create permutations $\pi_{i}(v)$ such that:
(1) Every vertex gets mapped to a degree 5 vertex exactly once.
(2) No duplicate edges: no edge is in more than one layer.

Conditions 1 and 2 (and our construction of \mathcal{G}_{C}) guarantee that G is $(6 t-1)$-regular.

Vertex Mapping

To complete our mapping, it helps to group portions of the triangles from \mathcal{G} into t levels, ℓ.

- $\ell=0$ is set of outer/inner (degree 5) vertices

Other t - 1 levels are groups of 16 triangles in \mathcal{G} - Each level has 48 vertices $\rightarrow t$ levels.

Vertex Mapping

To complete our mapping, it helps to group portions of the triangles from \mathcal{G} into t levels, ℓ.

- $\ell=0$ is set of outer/inner (degree 5) vertices
- Other $t-1$ levels are groups of 16 triangles in \mathcal{G}

Vertex Mapping

To complete our mapping, it helps to group portions of the triangles from \mathcal{G} into t levels, ℓ.

- $\ell=0$ is set of outer/inner (degree 5) vertices
- Other $t-1$ levels are groups of 16 triangles in \mathcal{G}
- Each level has 48 vertices $\rightarrow t$ levels.

Vertex Mapping

- Label vertices of \mathcal{G}_{C} as $\rho_{a, \ell, C}$
- a is an ordering of vertices within one level of \mathcal{G}
- ℓ is the level $(0 \leq \ell<t)$
- c is the cluster $(0 \leq c<C)$
- Label vertices of G such that $\pi_{0}\left(v_{a, \ell, c}\right)=\rho_{a, \ell, c}$.

General Mapping

$$
\pi_{i}\left(V_{a, l, c}\right)=\rho_{a,(l+i)} \bmod t,(c+i) \bmod c
$$

Vertex Mapping

- Label vertices of \mathcal{G}_{C} as $\rho_{a, \ell, C}$
- a is an ordering of vertices within one level of \mathcal{G}
- ℓ is the level $(0 \leq \ell<t)$
- c is the cluster $(0 \leq c<C)$
- Label vertices of G such that $\pi_{0}\left(v_{a, \ell, c}\right)=\rho_{a, \ell, c}$.

General Mapping

$$
\pi_{i}\left(V_{a, l, c}\right)=\rho_{a,}(l+i) \bmod t,(c+i) \bmod c
$$

Vertex Mapping

Vertex Mapping

- Label vertices of \mathcal{G}_{C} as $\rho_{a, \ell, C}$
- a is an ordering of vertices within one level of \mathcal{G}
- ℓ is the level $(0 \leq \ell<t)$
- c is the cluster $(0 \leq c<C)$
- Label vertices of G such that $\pi_{0}\left(v_{a, \ell, c}\right)=\rho_{\mathrm{a}, \ell, \mathrm{c}}$.

General Mapping

$$
\pi_{i}\left(V_{a, \ell, c}\right)=\rho_{a,(\ell+i)} \bmod t,(c+i) \bmod c
$$

Vertex Mapping

- Label vertices of \mathcal{G}_{C} as $\rho_{a, \ell, c}$
- a is an ordering of vertices within one level of \mathcal{G}
- ℓ is the level $(0 \leq \ell<t)$
- c is the cluster $(0 \leq c<C)$
- Label vertices of G such that $\pi_{0}\left(v_{a, \ell, c}\right)=\rho_{a, \ell, c}$.

General Mapping

Vertex Mapping

- Label vertices of \mathcal{G}_{C} as $\rho_{a, \ell, C}$
- a is an ordering of vertices within one level of \mathcal{G}
- ℓ is the level $(0 \leq \ell<t)$
- c is the cluster $(0 \leq c<C)$
- Label vertices of G such that $\pi_{0}\left(v_{a, \ell, c}\right)=\rho_{\mathrm{a}, \ell, \mathrm{c}}$.

General Mapping

Vertex Mapping

- Label vertices of \mathcal{G}_{C} as $\rho_{a, \ell, c}$
- a is an ordering of vertices within one level of \mathcal{G}
- ℓ is the level $(0 \leq \ell<t)$
- c is the cluster $(0 \leq c<C)$
- Label vertices of G such that $\pi_{0}\left(v_{a, \ell, c}\right)=\rho_{\mathrm{a}, \ell, \mathrm{c}}$.

General Mapping

$$
\pi_{i}\left(v_{a, \ell, c}\right)=\rho_{a,(\ell+i) \bmod t,(c+i) \bmod C}
$$

($6 t-1$)-regular Thickness- t Graphs

General Mapping

$$
\pi_{i}\left(V_{a, \ell, c}\right)=\rho_{\mathrm{a},(\ell+i)} \bmod t,(c+i) \bmod c
$$

Theorem
G is a $(6 t-1)$-regular thickness-t graph

($6 t-1$)-regular Thickness- t Graphs

General Mapping

$$
\pi_{i}\left(V_{a, \ell, c}\right)=\rho_{\mathrm{a},(\ell+i)} \bmod t,(c+i) \bmod c
$$

Theorem

G is a $(6 t-1)$-regular thickness-t graph

Proof.

($6 t-1$)-regular Thickness- t Graphs

General Mapping

$$
\pi_{i}\left(V_{a, \ell, c}\right)=\rho_{\mathrm{a},(\ell+i)} \bmod t,(c+i) \bmod c
$$

Theorem

G is a $(6 t-1)$-regular thickness-t graph

Proof.

Condition 1: Exactly one degree-5 assignment:

- $\rho_{\cdot, 0, \text {, }}$ are the only degree- 5 vertices
- $\pi_{i}\left(v_{\mathrm{a}, \ell, \mathrm{c}}\right)=\rho_{\cdot, 0,}$. only when $(\ell+i) \bmod t \equiv 0$.

($6 t-1$)-regular Thickness- t Graphs

General Mapping

$$
\pi_{i}\left(V_{a, \ell, c}\right)=\rho_{a,(\ell+i)} \bmod t,(c+i) \bmod C
$$

Proof.

Condition 2: No duplicate edges:

```
- Suppose }\mp@subsup{v}{a,\ell,c}{}\mathrm{ and }\mp@subsup{v}{\mp@subsup{a}{}{\prime},\mp@subsup{\ell}{}{\prime},\mp@subsup{c}{}{\prime}}{}\mathrm{ share edge in layers }i,j\mathrm{ with }i<
- # edges in }\mp@subsup{\mathcal{G}}{C}{}\mathrm{ between two nodes with same a
- # edges in G\mathcal{G}}\mathrm{ between two nodes with different c
- So, their "assignment" in i-th layer must have same c value.
- That is, c+ai\equiv\mp@subsup{c}{}{\prime}+\mp@subsup{a}{}{\prime}i\operatorname{mod}C\mathrm{ (and similarly for }j)
- Therefore, a(j-i) \equiv\mp@subsup{a}{}{\prime}(j-i)\operatorname{mod}C
- But 0}\leqa,\mp@subsup{a}{}{\prime}<48,j-i<t and C=48
- So, only holds when j=i
```


($6 t-1$)-regular Thickness- t Graphs

General Mapping

$$
\pi_{i}\left(v_{a, \ell, c}\right)=\rho_{a,(\ell+i) \bmod t,(c+i) \bmod C}
$$

Proof.

Condition 2: No duplicate edges:

- Suppose $v_{\mathrm{a}, \ell, c}$ and $v_{a^{\prime}, \ell^{\prime}, c^{\prime}}$ share edge in layers i, j with $i<j$.
- \exists edges in \mathcal{G}_{C} between two nodes with same a
- \# edges in \mathcal{G}_{C} between two nodes with different c
- So, their "assignment" in i-th layer must have same c value
- That is, $c+a i \equiv c^{\prime}+a^{\prime} i \bmod C$ (and similarly for j)
- Therefore, $a(j-i) \equiv a^{\prime}(j-i) \bmod C$
- But $0 \leq a, a^{\prime}<48, j-i<t$ and $C=48 t$
- So, only holds when $j=i$

($6 t-1$)-regular Thickness- t Graphs

General Mapping

$$
\pi_{i}\left(v_{a, \ell, c}\right)=\rho_{a,(\ell+i) \bmod t,(c+i) \bmod c}
$$

Proof.

Condition 2: No duplicate edges:

- Suppose $v_{\mathrm{a}, \ell, c}$ and $v_{a^{\prime}, \ell^{\prime}, c^{\prime}}$ share edge in layers i, j with $i<j$.
- $\#$ edges in \mathcal{G}_{C} between two nodes with same a
- $\#$ edges in \mathcal{G}_{C} between two nodes with different c
- So, their "assignment" in i-th layer must have same c value
- That is, $c+a i \equiv c^{\prime}+a^{\prime} i \bmod C$ (and similarly for j)
- Therefore, $a(j-i) \equiv a^{\prime}(j-i) \bmod C$
- But $0 \leq a, a^{\prime}<48, j-i<t$ and $C=48 t$
- So, only holds when $j=i$

($6 t-1$)-regular Thickness- t Graphs

General Mapping

$$
\pi_{i}\left(v_{a, \ell, c}\right)=\rho_{a,(\ell+i) \bmod t,(c+i) \bmod C}
$$

Proof.

Condition 2: No duplicate edges:

- Suppose $v_{\mathrm{a}, \ell, c}$ and $v_{a^{\prime}, \ell^{\prime}, c^{\prime}}$ share edge in layers i, j with $i<j$.
- \ddagger edges in \mathcal{G}_{C} between two nodes with same a
- \exists edges in \mathcal{G}_{C} between two nodes with different c
- So, their "assignment" in i-th layer must have same c value.
- That is, $c+a i \equiv c^{\prime}+a^{\prime} i \bmod C$ (and similarly for j)
- Therefore, $a(j-i) \equiv a^{\prime}(j-i) \bmod C$.
- So, only holds when $j=i$

($6 t-1$)-regular Thickness- t Graphs

General Mapping

$$
\pi_{i}\left(v_{a, \ell, c}\right)=\rho_{a,(\ell+i)} \bmod t,(c+i) \bmod C
$$

Proof.

Condition 2: No duplicate edges:

- Suppose $v_{a, \ell, c}$ and $v_{a^{\prime}, \ell^{\prime}, c^{\prime}}$ share edge in layers i, j with $i<j$.
- $\#$ edges in \mathcal{G}_{C} between two nodes with same a
- \nexists edges in \mathcal{G}_{C} between two nodes with different c
- So, their "assignment" in i-th layer must have same c value.
- That is, $c+a i \equiv c^{\prime}+a^{\prime} i \bmod C$ (and similarly for j)
- Therefore, $a(j-i) \equiv a^{\prime}(j-i) \bmod C$.
- But $0 \leq a, a^{\prime}<48, j-i<t$ and $C=48 t$
- So, only holds when $j=i \quad \Rightarrow \Leftarrow$

What about geometric thickness- t graphs?

Cartesian Product

Definition

The Cartesian product of two graphs: $G=G_{1} \square G_{2}$

- $V(G)=V\left(G_{1}\right) \times V\left(G_{2}\right)$

Cartesian Product

Definition

The Cartesian product of two graphs: $G=G_{1} \square G_{2}$

- $V(G)=V\left(G_{1}\right) \times V\left(G_{2}\right)$
- $\left(\left(v_{1}, v_{2}\right),\left(u_{1}, u_{2}\right)\right) \in E(G)$ if and only if - $v_{1}=u_{1}$ and $\left(v_{2}, u_{2}\right) \in E\left(G_{2}\right)$, or vice versa

Cartesian Product

Definition

The Cartesian product of two graphs: $G=G_{1} \square G_{2}$

- $V(G)=V\left(G_{1}\right) \times V\left(G_{2}\right)$
- $\left(\left(v_{1}, v_{2}\right),\left(u_{1}, u_{2}\right)\right) \in E(G)$ if and only if
- $v_{1}=u_{1}$ and $\left(v_{2}, u_{2}\right) \in E\left(G_{2}\right)$, or vice versa

Cartesian Product

Lemma

$\bar{\Theta}\left(G_{1} \square G_{2}\right) \leq \bar{\Theta}\left(G_{1}\right)+\bar{\Theta}\left(G_{2}\right)$
The geometric thickness of the cartesian product is (at most) the sum of the geometric thicknesses of the two graphs.

Cartesian Product

Lemma

$\bar{\Theta}\left(G_{1} \square G_{2}\right) \leq \bar{\Theta}\left(G_{1}\right)+\bar{\Theta}\left(G_{2}\right)$
The geometric thickness of the cartesian product is (at most) the sum of the geometric thicknesses of the two graphs.

Proof.

By picture...

Cartesian Product

5-regular planar graph G_{5}

5t-regular graphs

Theorem

There exist $5 t$-regular graphs with geom. thickness at most t.

Proof.

- $\mathbb{G}=G_{5} \square G_{5} \square \cdots \square G_{5}(t-1$ times $)$
- $\bar{\Theta}(\mathbb{G}) \leq t$
- Every vertex has degree $5 t$
- Exactly t for $t<7$

Edge counting

- If $\bar{\Theta}(\mathbb{G})<t$, then 5 tn $<6(t-1) n($ or $t>6)$

Conclusions and Open Questions

Theorem

There exist $(6 t-1)$-regular thickness-t graphs.

Question \#1

What is the smallest $(6 t-1)$-regular graph of thickness t ?
Our example had $(48 t)^{2}$ vertices and we know that $|V| \geq 12 t$.
Durocher et al. present a 32-vertex thickness-two graph.

Conclusions and Open Questions

Theorem

There exist $(6 t-1)$-regular thickness-t graphs.

Question \#1

What is the smallest $(6 t-1)$-regular graph of thickness t ?
Our example had $(48 t)^{2}$ vertices and we know that $|V| \geq 12 t$.
Durocher et al. present a 32-vertex thickness-two graph.

Conclusions and Open Questions

Theorem

There exist 5 t-regular graphs with geom. thickness at most t.

Question \#2

What is the largest k such that there exists a k-regular graph of geom. thickness t ? Is there an 11-regular graph with geom. thickness 2?

Question \#3
Does the graph \mathbb{G} have geom. thickness exactly t for all $t \in \mathbb{Z}^{+}$? We know it is true for $t<7$.

Conclusions and Open Questions

Theorem

There exist 5t-regular graphs with geom. thickness at most t.

Question \#2

What is the largest k such that there exists a k-regular graph of geom. thickness t ? Is there an 11-regular graph with geom. thickness 2?

Question \#3
Does the graph \mathbb{G} have geom. thickness exactly t for all $t \in \mathbb{Z}^{+}$? We know it is true for $t<7$.

Conclusions and Open Questions

Theorem

There exist $5 t$-regular graphs with geom. thickness at most t.

Question \#2

What is the largest k such that there exists a k-regular graph of geom. thickness t ? Is there an 11-regular graph with geom. thickness 2?

Question \#3

Does the graph \mathbb{G} have geom. thickness exactly t for all $t \in \mathbb{Z}^{+}$? We know it is true for $t<7$.

Thank You!

