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0. Introduction

The Poisson Convergence Theorem (Corollary 1.1 below) has a statistical mechanical

interpretation.  Let A be the intersection of a fixed rectangle in Rd with the d-dimensional

lattice n–1 Zd regarded as a subset of Rd.  For each site m ∈ A associate the Bernoulli

random variable X m
n  which takes the value 1 if a particle is present at m (with probability

pm
n  ) and the value 0 otherwise.  The distribution of the collection {X m

n }of independent

random variables may be thought of as the Gibbs distribution for an ideal gas on the

lattice A.  If we let n approach infinity, so that the lattice spacing decreases to zero, and if

we maintain for each n approximately the same average density of particles in A, then the

Poisson Convergence Theorem says that the lattice ideal gas distributions converge

weakly to the standard Gibbs distribution for an ideal gas in the continuum.

On physical grounds, one expects that a similar convergence result holds for

interacting particles.  This would amount to a generalization of the Poisson Convergence

Theorem for certain sums of strongly correlated (essentially Gibbs distributed) random

variables.  The main parameter now becomes a kind of “chemical activity” zm
n   instead of

pm
n .  In the case of independent random variables considered in the Poisson Convergence

Theorem,  zm
n  = pm

n (1– pm
n )–1 and an analysis based on these quantities produces an

estimate on the rate of convergence that is sharper than the standard fare when the sum of

the zm
n  = pm

n (1– pm
n )–1 is less than  2.



2

Our generalization, in the form of Theorem 1.1,  allows us to develop a lattice-to-

continuum theory of classical statistical mechanics including some results for the infinite

volume case, i.e., a lattice-to-continuum theory for the thermodynamic limit.  In

particular we find a potentially useful criterion for the existence of a first-order phase

transition in hard-core continuum models in terms of related lattice models.

In Section 1, we introduce notation and state and prove our generalization of the

Poisson Convergence Theorem.  Section 2 is devoted to applications  to statistical

mechanics. 

1. Gibbs Convergence

Let A ⊂ Rd be a rectangle with volume |A|.  For each integer n,  let d(n) = d i(n)
i=1

d

∏ where

each di is an increasing positive integer valued function.  Let  |A|zn = zm
n

m=1

d(n)

∑  where zm
n  >

0 for each m and n.  Assume that the collection {zm
n } is chosen so that A may be

partitioned into a regular array of d(n) subrectangles {S1
n , ..., Sd(n)

n }with vol. of (Sm
n ) ≡

v(Sm
n ) = 

zm
n

zn

.  For each m and n, let qm
n  ∈ Sm

n .  We will consider a sequence of functions

(fk) satisfying:

Condition 1.1

a. f0 ≡ 1

b. For each k ≥ 1, fk(x1, x2, . . . , xk) is a nonnegative function, Riemann integrable on

Ak, satisfying:

i. fk is a symmetric function for each k, i.e.,

    fk(xσ(1), xσ(2), . . . , xσ(k)) =  fk(x1, x2, . . . , xk) for any permutation σ.

ii. There exists a constant C such that fk(x1, x2, . . . , xk) ≤ Ck for all k ≥ 0.

iii. fk(x1, x2, . . . , xk) = 0 if xi = xj for some i ≠ j.
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Remark 1.1 Condition iii above restricts fk on a set of Lebesgue measure  zero and is

therefore not necessary in what follows.  We include it because it simplifies some of the

discussion below and because it is satisfied by our applications of Theorem 1.1.

Theorem 1.1  Let  X m
n , 1 ≤ m ≤ d(n), be random variables each taking only the values 0

and 1 with density function

P{X1
n  = a1, ..., X d(n)

n = ad(n)} ∝ f k (q i1

n ,...,q i k

n ) (zm
n )a m

m=1

d(n)

∏ (1.1)

where each ai = 0 or 1 and the indicies on the right side are determined by k = am
m=1

d(n)

∑ =

a i m

m =1

k

∑ .  Assume

zn n →∞ →     z > 0   and max
1≤ m≤ d(n)

zm
n

n →∞ →    0.  (1.2)

Define

Sn = X1
n + . . . + X d(n)

n . (1.3)

Define a nonnegative integer valued random variable S by the density function,

P(S = k) = 

  

zk

k!
 f k (x1,...,x k ) dx1Ldxk

A
k∫

zn

n!
 f n (x1,...,x n ) dx1Ldxn

A n∫
n =0

∞

∑
(1.4)

Then Sn ⇒ S, i.e., Sn converges weakly to S.

proof.
P(Sn = k) =  

  a 1 +L+a d(n) = k
∑ P{X1

n  = a1, ..., X d(n)
n = ad(n)} (1.5)

= 
(zn )k

Z(n)
 f k (q i1

n ,..., qi k

n ) v(Sim

n )
m =1

k

∏
{i1 ,...,i k }⊂{1,2,...,d(n)}

∑ (1.6)
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where Z(n)–1 is the constant of proportionality in (1.1).  By Condition 1.1,

P(Sn = k) = 

  

(z n )k

k!
L f k (q i1

n ,..., qi k

n ) v(Sim

n )
m =1

k

∏
i k =1

d(n)

∑
i1 =1

d(n)

∑
(zn )k

k!
L fk (q i1

n ,...,q i k

n ) v(Si m

n )
m=1

k

∏
i k =1

d(n)

∑
i1 =1

d(n)

∑
k= 0

d(n)

∑
(1.7)

The numerator in (1.7) is a Riemann sum converging to the numerator in (1.4).  The

convergence of the denominator in (1.7) to the denominator in (1.4) follows from

Condition 1.1 and the Lebesque Dominated Convergence Theorem. ❚

Corollary 1.1 (Poisson Convergence Theorem) Let {d(1), d(2),...} be an increasing

sequence of positive integers.  For 1 ≤ m ≤ d(n), let X m
n  = 1 with probability pm

n  and

X m
n  = 0 with probability 1– pm

n .  Let {X1
n , ..., X d(n)

n } be independent.  Assume

pm
n

m=1

d(n)

∑ n →∞ →    z > 0 and max
1≤ m≤ d(n)

pm
n

n →∞ →    0.  Let Sn = X1
n + . . . + X d(n)

n .  Then  

P(Sn = k) n →∞ →     e–z 
zk

k!
. (1.8)

proof.  Let Α = [0, 1] ⊂ R .  Define zm
n  = pm

n (1– pm
n )–1.  Then (1.2) holds.  Also,

P{X1
n  = a1, ..., X d(n)

n = ad(n)} = [a mpm
n + (1− am )

m=1

d(n)

∏ (1− pm
n )] = 

(zm
n )a m

m=1

d(n)

∏
(1+ zm

n )
m=1

d(n)

∏
 ∝ (zm

n )a m

m=1

d(n)

∏ .

where ai = 0 or 1.  Choose the qm
n  ∈ Sm

n  to be distinct, but otherwise arbitrary, and

fn(x1, x2, . . . , xn) ≡ 1 whenever the points {xi} are distinct (and otherwise

fn(x1, x2, . . . , xn) = 0).  By Theorem 1.1,

P(Sn = k)  n →∞ →    

  

zk

k!
 1 dx1Ldxk

[0,1]
k∫

zn

n!
 1 dx1Ldxn

[0,1]n∫
n =0

∞

∑
 = e–z 

zk

k!
(1.9)

since fn(x1, x2, . . . , xn) ≡ 1 almost surely. ❚
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Remark 1.2 Our method of proof provides an estimate for the rate of convergence for

Corollary 1.1.  For simplicity and with no loss of generality, let d(n) = n.  Since fn ≤ 1,

  

(zn )k

k!
L fk (q i1

n ,...,q i k

n ) v(Si m

n )
m=1

k

∏
i k =1

n

∑
i1 =1

n

∑  ≤ 
(zn )k

k!
(1.10)

Replacing fn by 1 on the left side of (1.10) and subtracting the volume of all

subrectangles along any diagonal of [0, 1]k gives

  

(zn )k

k!
L fk (q i1

n ,...,q i k

n ) v(Si m

n )
m=1

k

∏
i k =1

n

∑
i1 =1

n

∑  ≥ 
(zn )k

k!
1 −

k

2

 
 
  

 
z i

n

zn

 
 
  

 
 

i =1

n

∑
2 

 
 

 

 
 (1.11)

for k ≥ 2.  Straightforward manipulations then give,

P(Sn = k) ≤ 
e− z n

(zn )k

k!

1 −
(zn )n +1

(n +1)!

 
  

 
  1 − 1

2 (z i
n )2

i=1

n

∑ 
  

 
  

(1.12)

and

P(Sn = k) ≥ e− z n
(zn )k

k!
1 −

k

2

 
 
  

 
z i

n

zn

 
 
  

 
 

i =1

n

∑
2 

 
 

 

 
 (1.13)

for k ≥ 2.  In the case that zn = zm
n

m =1

n

∑  = z, by (1.13),

P(S = k) – P(Sn = k)  ≤ 
1

2
e−z zk− 2

(k − 2)!
(z i

n )2

i=1

n

∑ (1.14)

for k ≥ 2, and otherwise the left side is ≤ 0.  If A = {k : P(S = k) – P(Sn = k) ≥ 0}, then

k∈A
∑ [P(S = k) – P(Sn = k)] ≤ 

k∈A
∑ 1

2
e−z zk− 2

(k − 2)!
(z i

n )2

i=1

n

∑ < 
1

2
(z i

n )2

i =1

n

∑ . (1.15)

Therefore, the total variation norm,

k= 0

∞

∑ |P(S = k) – P(Sn = k)| < (z i
n )2

i =1

n

∑ (1.16)
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By contrast,  using different methods, C. Stein [S], eq. (43) pg. 89  (see also Chen [C],

Hodges and LeCam [H-L], and Durret [D] ), has shown that if pi
n

i =1

n

∑ = z, then

k= 0

∞

∑ |P(S = k) – P(Sn = k)| ≤ 2 min(z–1, 1) (pi
n )2

i =1

n

∑ (1.17)

Therefore, when zm
n

m =1

n

∑  = z  and (1– max
1≤ m≤ d(n)

pm
n )–2 < min (2, 2/z),  our estimate is sharper

than (1.17).   We note that pi
n

i =1

n

∑ = z and zm
n

m =1

n

∑  = z are mutually exclusive and our

estimate (1.16) can also be derived using the methods of [H-L].

2. Lattice to Continuum Statistical Mechanics

We begin with a description of the finite volume continuum theory of classical

statistical mechanics.

For a Borel measurable subset Λ ⊂ Rd, let X(Λ) denote the set of all locally finite

subsets of Λ.  X(Λ) represents configurations of identical particles in Λ.  We let ∅ denote

the empty configuration.  Let BΛ be the σ-field on X(Λ) generated by all sets of the form

{s∈ X(Λ): |s ∩ Β| = m}, where B runs over all bounded Borel subsets of Λ, m runs over

the set of nonnegative integers, and | . | denotes cardinality. We let (Ω, S) = (X(Rd),

BRd).  For a configuration x ∈ Ω, let xΛ = x ∩ Λ.

A Hamiltonian H is an S measurable map from the set of finite configurations ΩF

in Ω to (-∞, ∞] of the form

H(x) =
N= 2

|x|

∑ ϕN(y)
y⊂x
|y| =N

∑
                            

(2.1)

where the function ϕΝ on configurations of cardinality N is an N-body potential.  The

configuration x in (2.1) is coordinatized by x = {x1, x2, ... , x|x|}.  For x∈ X(Λ), we will

sometimes write HΛ(x) instead of H(x).

 Define the interaction energy between x ∈ X(Λ) and s ∩ Λc  by
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WΛ(x|s) =
N= 2

∞

∑ ϕN (y)
y∩ x≠∅≠y∩ s

|y| =N,y ⊂x ∨s

∑                              (2.2)

where we write x∨s to mean the configuration x ∪ (s ∩ Λc). We will sometimes write

W(x | s) when x and s are located in disjoint regions.  Define

HΛ (x | s) = HΛ(x) + WΛ (x | s)        (2.3)

For a bounded Borel set Λ, let |Λ| denote the Lebesgue measure of Λ.  The symbol |  | may

therefore represent cardinality  or Lebesgue measure, but the meaning will always be

clear from the context.  For each i ∈ Zd, let

Qi = {r∈  Rd: rk – 1/2 ≤ ik < rk + 1/2, k=1,...,d}

so that the unit cubes {Qi} partition Rd.  Define |xi| ≡ |xQ i
| = |x ∩ Qi |.

We assume that H satisfies the following:

Condition 2.1

a) H is translation invariant

b) H is stable, i.e., H(x) ≥ - K |x| for some K ≥ 0 and all x∈ ΩF

c) H(x) is lower regular. For any Λ1 and Λ2 which are each finite unions of unit

cubes with x ⊂ Λ1 and s ⊂ Λ2,

W (x | s)  ≥ – 
j∈Λ2

∑
i ∈Λ1

∑ ||i–j||–λ  |xi| |sj|

where K > 0, λ > d are fixed.

d) H(x) is tempered.  There exists Ro > 0 such that with the same notation as in

part c, assuming Λ1 and Λ2 are separated by a distance Ro or more,

W (x | s)  ≤ K 
j∈Λ2

∑
i ∈Λ1

∑ ||i–j|| –λ |xi| |sj|

e) exp{–ϕn(x1, . . . , xn)} is Riemann integrable in any closed rectangle of Rdn for

all n ≥ 2.
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Temperedness and lower regularity  allow W(x|s) to be defined when s is an infinite

configuration of particles.  We assume in this section that the configuration s is chosen so

that W (x | s) is finite.

Let XN(Λ) be the set of configurations of cardinality N in Λ and let

T: ΛN → XN(Λ) be the map which takes the ordered N-tuple (x1, . . . , xN) to the

(unordered) set {x1, . . . , xN}.  In a natural way T defines an equivalence relation  on ΛN

and XN(Λ) may be regarded as the set of equivalence classes induced by T.  For n = 1, 2,

3, ..., let dnx be the projection of nd-dimensional Lebesgue measure onto XN(Λ) under

the projection T: ΛN → XN(Λ).  The measure dox assigns mass 1 to X0(Λ) = {∅}.  The

unnormalized Poisson measure on (X(Λ), BΛ) with parameter z, interpreted here as

fugacity, is given by

νΛ (dx) =
zn

n!n= 0

∞

∑ dnx     (2.4)

If Λ ∩ A = ∅ where Λ and A are Borel sets, then (X(Λ), BΛ, νΛ) × (X(A), BA, νA) may

be identified with (X(Λ ∪ A), BΛ∪A, νΛ∪A) via xΛ × xA = xΛ ∪ xA. 

The grandcanonical partition function in Λ with boundary configuration s is

defined by

Z Λ (s) = exp{−βH(x|s)}
X( Λ )
∫ νΛ (dx) = 

  

zn

n!
 exp{-βH(x1,K,x n |s)} dx1LdxnΛn∫

n =0

∞

∑ (2.5)

where β in inverse temperature.  The pressure p(β, z, Λ) for the Hamiltonian H in Λ is

given by

βp(β, z, Λ) = 
ln Z(∅)

|Λ |
(2.6)

For a a bounded Borel set Λ  in Rd and a configuration s in Λc,  the finite volume Gibbs

state with boundary configuration s for H, β > 0, and z is
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σΛ (dx|s) =
exp{−βH(x|s)}

ZΛ (s)
νΛ (dx) (2.7)

The probability that there are k particles in a Borel subset Γ of Λ may be determined by

integrating the characteristic function for the set { x ⊂ Λ: |x∩ Γ| = k} with respect to

σΛ( dx | s).

We now describe lattice theories of statistical mechanics in finite volume in a

form suitable for Theorem 2.1 below.

Let {Sm
n } be a partition of Rd by translates of (0

i=1

d

∏ ,
1

n
] by linear combinations of

the standard basis vectors with coefficients of the form 
m

n
 where m ∈ Z.  For each m and

n choose a point qm
n ∈ Sm

n  and define Q(n) ≡ { qm
n }.  For example,  Q(n) = 

1

n
Zd ⊂ Rd.

Let Λ be a Jordan-measurable set in Rd  (i.e. Λ is bounded and the boundary of Λ has

Lebesgue measure zero).

Remark 2.1 The Hamiltonian H(x) restricted to Q(n) ∩Λ can be rewritten in a form more

commonly associated with lattice models.  Let the integer n be fixed.  For each lattice site

qm
n  ∈ Q(n) associate the occupation variable (or “spin” variable) sm which takes the value

1 if a particle is present at qm
n  and takes the value 0 otherwise.  Let s denote the

configuration (s1, ... , sd(n)) in the rectangle Q(n) ∩A such that sj = 1 if and only if

j ∈ {i1, ... , ik}.  Then we may identify

H(s) = H(q i 1

n ,...,q ik

n ) =  
  m =2

k

∑ J j1j 2L jm
sj1

j1 < j2 <L< j m

∑ s j2
Ls jm

where   J j1 j2 Lj m
= ϕm (q j1

n ,..., q jm

n ).

The grandcanonical partition function ZΛ (n, s) for the lattice gas on Q(n) ∩Λ

with the Hamiltonian H given by (2.1) restricted to Q(n) ∩Λ, inverse temperature β, and

fugacity z is given by

ZΛ (n, s) = 

  

z

nd

 
 

 
 

k= 0

|Q(n)∩Λ |

∑
k

exp{−βH(qi 1

n ,...,q i k

n |s)}
{qi 1

n ,K,q i k
n }⊂Q(n) ∩Λ
∑ (2.8)
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The grandcanonical pressure is then,

βpn(β, z, Λ) = 
ln Z(n, ∅)

|Q(n) ∩Λ |n − d (2.9)

The finite volume Gibbs state is defined on the measurable space

({0, 1}Q(n) ∩Λ, BΛ(n)) where BΛ(n) is the σ-field consisting of all subsets of

{0, 1}Q(n) ∩Λ .   Elements of {0, 1}Q(n) ∩Λ may be identified  in an obvious way with

subsets of Q(n) ∩Λ.  The finite volume Gibbs state σΛ(  | s)n with boundary configuration

s is  given by

σΛ (B|s)n =
exp{−βH(q|s)}

ZΛ (n,s)q∈B
∑ z

nd

 
 

 
 

|q|

(2.10)

where B ∈BΛ(n).  The probability that there are k particles in a subset Γ of Q(n) ∩Λ may

be determined by integrating the characteristic function for the set

{ x ⊂ Q(n) ∩Λ: |x∩ Γ| = k} with respect to σΛ( dx | s)n.

Definition 2.1 Let Λ⊂ Rd be Jordan-measurable.  The sequence of lattice Gibbs states

{σΛ(  | s)n } converges weakly to the continuum Gibbs state σΛ(  | s) if for any Jordan-

measurable set Γ contained in Λ,  the probability according to σΛ(  | s)n that there are

exactly k particles in Q(n) ∩Γ converges to the probability according to σΛ(  | s)  that

there are exactly k particles in Γ, as n approaches infinity.

Theorem 2.1 For a fixed Jordan-measurable Λ⊂ Rd, as n → ∞,

a) the lattice partition function ZΛ (n, s) converges to the continuum partition function

    ZΛ(s).

b) the lattice pressures pn(β, z, Λ) converge to the continuum pressure p(β, z, Λ)

c) for any s, the lattice Gibbs states σΛ(  | s)n converge weakly to the continuum Gibbs
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    States σΛ(  | s).

proof.  Let A = [a i
i=1

d

∏ ,b i] be a closed rectangle with integer vertices ai and bi containing

Λ.  For convenience relabel {qm
n } so that Q(n) ∩ Α = {q1

n , ... , qd(n)
n }.

a) Define random variables{ X m
n } associated with the lattice sites {qm

n } taking the values

0 and 1 with distribution P{X1
n  = a1, ..., X d(n)

n = an} ∝ f k (q i1

n ,...,q i k

n ) (zm
n )a m

m=1

d(n)

∏ where

zm
n = zn–d and f k (q i1

n ,...,q i k

n ) = χ Λk (q i1

n ,..., qi k

n ) exp{–β H ( (q i1

n ,..., qi k

n ) |s)} and where

χ Λk is the characteristic function for Λk and k  is determined as in (1.1).  Then fk satisfies

Condition 1.1.  If we define as in Theorem 1.1 Sn = X1
n + . . . + X d(n)

n , then by Theorem

1.1,

ZΛ (n, s) ≡ P(Sn = 0)–1  → P(S = 0)–1≡ ZΛ (s) . (2.11)

b) This follows immediately from part a and the continuity of the logarithm.

c) Let Γ be a Jordan measurable subset of Λ and let m be a nonnegative integer.  With the

notation of Theorem 1.1, let z i
n = zn–d and

f k (q i1

n ,...,q i k

n ) = χ Λm ∨ (Λ \ Γ )k−m ({qi1

n ,...,q i k

n })exp{–β H (q i1

n ,..., qi k

n |s)},

where χ Λm ∨ (Λ \ Γ )k−m ({qi1

n ,...,q i k

n })=  1 provided  |{qi1

n ,...,q i k

n }∩Λ| = m and

|{qi1

n ,...,q i k

n }∩Λ\Γ| = k – m; otherwise χ Λm ∨ (Λ \ Γ )k−m ({qi1

n ,...,q i k

n })= 0.

The collection {fk} satisfies Condition 1.1.  By Theorem 1.1, P(Sn = 0)–1  → P(S = 0)–1.

Combining this with part a shows that,

ZΛ (n, s)–1

  

z

nd

 
 

 
 

k= 0

|Q(n)∩A|

∑
k

fk (q i1

n ,...,q i k

n )
{q i1

n ,K, q i k
n }⊂ Q(n) ∩A

∑

converges as n → ∞ to

ZΛ (s)–1

  

z

k!k= 0

∞

∑
k

 f k (x1,...,x k )
A k∫  dx1Ldxk
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In other words, the probability according to σΛ(  | s)n that there are exactly m particles in

Q(n) ∩Γ converges to the probability according to σΛ(  | s)  that there are exactly m

particles in Γ, as n approaches infinity. ❚

We now show how the finite volume lattice approximation of the continuum

pressure may be extended to the infinite volume case, i.e., after taking the

thermodynamic limit.  For simplicity we assume that our Hamiltonian H is given by a

pair potential with a hard-core of radius R.  This has the effect of limiting the number of

particles which can accumulate in any unit cube Qi in Rd.  The lattice and continuum

infinite volume pressures are given respectively by

pn(β, z) = β–1 lim
|A| ↑∞

ln ZA(n, ∅)

|Q(n) ∩ A|n− d (2.12)

and

p(β, z) = β–1 lim
|A| ↑∞

ln Z A(∅)

|A|
(2.13)

where limit may be taken via an increasing sequence of cubes centered at the origin.

Theorem 2.2 If H is determined by a pair potential with hard-core radius R satisfying

Condition 2.1,  then lim
n →∞

pn(β, z) = p(β, z) for each β, z > 0.

proof.  Let A be a cube centered at the origin containing an integer number of unit cubes

of the form Qi.  Let A be partitioned into cubes {Ak} of equal size and integer

dimensions.  The size and number of these cubes will be determined below.  Assume that

A is large enough to make the partitions we describe below possible.  With this notation

we may write,

ZA(∅) = exp{−βH(x ∩ A k )} exp{− 1
2 β

k
∏

k
∏∫ W(x ∩ A k |x ∩ Ak

c )}νA (dx)  (2.14)
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From the hard-core assumption and Condition 2.1c,

W(x ∩ A k |x ∩ Ak
c ) ≥ −N2K ||i − j||−λ

j:Q j⊂ A k
c

∑
i:Q i ⊂ A k

∑ (2.15)

for some integer N, and the bound on the right side is the same for all k.   Therefore,

ZA(∅) ≤ exp
β
2

N2K ||i − j||−λ

j:Q j ⊂ A k
c

∑
i:Q i ⊂A k

∑
 
 
 

 
 
 k

∏ exp{−βH(x ∩ A k )}
k

∏∫ νA(dx)  

= exp
β
2

N2K ||i − j||−λ

j:Q j ⊂ A k
c

∑
i:Q i ⊂A k

∑
 
 
 

 
 
 k

∏ Z Ak
(∅)

k
∏ (2.16)

because of the product structure of νΑ.  An inequality analogous to (2.16) holds with

ZA(∅) and Z Ak
(∅) replaced by ZA(n, ∅) and Z Ak

(n, ∅) respectively.

To obtain lower bounds for ZA(∅) and ZA(n, ∅), we partition A differently.

Necessarily, the hard-core diameter 2R of the Hamiltonian H is less than R0, where R0 is

the constant appearing in Condition 2.1d.  Define x ∈ A to be a “corridor point” if x lies

within a distance 1
2 R0 of some Ak not containing x or within a distance 1

2 R0 of Ac and let

C be the collection of all corridor points. Then A is partitioned by the sets C and a

collection {Bk} of disjoint cubes of equal size with each Bk a proper subset of some Ak.

Any two cubes Bi and Bj are separated by a distance of at least R0.   Let ∅C denote the

event {x⊂ A: x∩C = ∅}, i.e., there are no particles in C. Then

ZA(∅) ≥ exp{−βH(x)}
∅ C

∫ νA (dx)

= exp{−βH(x ∩ Bk )} exp{− 1
2 β

k
∏

k
∏

∅ C

∫ W(x ∩ Bk |x ∩ Bk
c )}νA(dx) (2.17)

By Condition 2.1d and the fact that Bk ⊂ Ak,

W(x ∩ Bk |x ∩ Bk
c ) ≤ N2K ||i − j||−λ

j:Q j⊂ A k
c

∑
i:Q i ⊂ Ak

∑ (2.18)

It follows that
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ZA(∅) ≥ exp −
β
2

N2K ||i − j||−λ

j:Q j⊂ A k
c

∑
i:Q i ⊂ A k

∑
 
 
 

 
 
 k

∏ exp{−βH(x ∩ Bk )}
k

∏
∅ C

∫ νA(dx)  

= exp −
β
2

N2K ||i − j||−λ

j:Q j⊂ A k
c

∑
i:Q i ⊂ A k

∑
 
 
 

 
 
 k

∏ ZB k
(∅)

k
∏ (2.19)

An inequality analogous to (2.19) holds with ZA(∅) and Z Ak
(∅) replaced by ZA(n, ∅)

and Z Ak
(n, ∅) respectively.

Combining (2.16) and (2.19) gives for any k,
1

|A|
ln ZA(∅) – 

1

|A|
ln ZA(n, ∅) ≤

1

|A k|
ln Z Ak

(∅) – 
1

|A k|
ln ZB k

(n,∅) + 
1

|A k|
βN 2K ||i − j||−λ

j:Q j ⊂ A k
c

∑
i:Qi ⊂ A k

∑ (2.20)

Taking the limit as the cube A increases to Rd gives

βp(β, z) – βpn(β, z) ≤
1

|A k|
ln Z Ak

(∅) – 
|Bk |

|A k|

1

|Bk |
ln ZB k

(n,∅) + 
1

|A k|
βN 2K ||i − j||−λ

j:Q j ⊂ A k
c

∑
i:Qi ⊂ A k

∑ (2.21)

Now given ε > 0, choose fixed Ak and Bk large enough so that :

 
1

|A k|
βN 2K ||i − j||−λ

j:Q j ⊂ A k
c

∑
i:Qi ⊂ A k

∑ < ε (2.22)

 
|Bk |

|A k|
 > 1 – ε (2.23)

 |
1

|A k|
ln Z Ak

(∅) – 
1

|Bk |
ln ZB k

(∅) | < ε (2.24)

For such fixed Ak and Bk choose n sufficiently large (using Theorem 2.1b) so that

|
1

|Bk |
ln ZB k

(∅)  – 
1

|Bk |
ln ZB k

(n,∅) | < ε (2.25)

Combining (2.21) through (2.25) gives,

βp(β, z) – βpn(β, z) ≤ 
1

|A k|
ln Z Ak

(∅) – (1 – ε)[
1

|A k|
ln Z Ak

(∅) – 2ε] + ε (2.26)

Hence,

βp(β, z) – βpn(β, z) ≤ ε
1

|A k|
ln Z Ak

(∅) + 3ε (2.27)

Since {
1

|A k|
ln Z Ak

(∅)}is a bounded sequence for all Ak with integer vertices, it follows

that
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lim inf
n→∞

pn(β, z) ≥ p(β, z) (2.28)

An analogous argument shows that limsup
n→∞

pn(β, z) ≤ p(β, z) which establishes the

theorem. ❚

A probability measure σ on (Ω, S) is a continuum Gibbs state (or infinite volume

continuum Gibbs state) for H, β, and z if it satisfies the DLR equations, i.e., if

σ (∫ f(x∨s) σΛ(dx | s)) = σ(f) (2.29)

for every bounded S-measurable function f from Ω  to R and every bounded Borel set Λ.

The definition of infinite volume Gibbs states for the lattice models we consider is

completely analogous.

For any of the grandcanonical lattice or continuum models we consider, a first

order phase transition is said to occur if the (infinite volume) pressure fails to be

differentiable as a function of the chemical potential µ ≡ β–1log z at some point (β0, µ0).

In case the pressure is not differentiable with respect to µ at the point (β0, µ0), there exist

two translation-invariant Gibbs states whose expectations of the number of particles in a

unit cube are equal respectively to D–p(β0, µ0)  and D+p(β0, µ0),  where D+ (resp. D–)

denotes the right-hand  derivative (resp. the left-hand derivative) with respect to µ, and

where p may be either the lattice or continuum pressure, which we now  regard as a

function of β, µ  instead of  β, z (see, e.g., [K-Y] and the references contained therein).

The quantity D+p(β0, µ0) – D–p(β0, µ0) is therefore the gap between  the high density

and low  density states of matter which can co-exist in equilibrium at the values β0, µ0 of

the inverse temperature and chemical potential.

The following theorem may be useful in proving the existence of first-order phase

transitions for continuum models of statistical mechanics.

Theorem 2.3 Assume that the Hamiltonian H is determined by a pair potential with a

hard-core and that it satisfies Condition 2.1.  If each element in a subsequence of lattice
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pressures (on  lattices of the form Q(n)) exhibits a first order phase transition at βn, µn

with the gap between the high density and low  density states bounded below by a

positive number, and (βn, µn) → (β, µ), then the continuum pressure exhibits a first order

phase transition at β, µ with the same lower bound on the gap between high density and

low density states.

proof.  It is routine to check that if (Pk(t)) is a sequence of convex functions defined on a

open interval I of the real line and (Pk(t)) converges pointwise to a convex function P(t)

and tk → t0∈ I, then  Pk(tk) → P(t0) and

D–P(t0) ≤ lim inf
k→∞

 D–Pk(tk) ≤ limsup
k→∞

D+Pk(tk)≤ D+P(t0). (2.30)

(Here D+ P (t0) and D–P (t0) denote respectively the right and left hand derivatives of the

fuction P at t0.)  It follows that lim
n →∞

pn(βn, µ) = p(β, µ) when  βn→ β,  and that

D–p(β, µ) ≤ lim inf
n→∞

 D–pn(βn, µn)  ≤ limsup
n→∞

D+pn(βn, µn) ≤ D+p(β, µ) (2.31)

when µn→ µ, where the one-sided derivatives are again taken with respect to µ.❚
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