A Generalization of Poisson Convergenceto “ Gibbs Conver gence”

with Applicationsto Statistical M echanics

Lincoln Chayes David Klein

Department of Mathematics Department of Mathematics
UCLA Cdlifornia State University

Los Angeles, CA 90024 Northridge, CA 91330
|chayes@math.ucla.edu dklein@vax.csun.edu

Abstract. We prove a theorem which generalizes Poisson convergence for sums of independent random variables
taking the values 0 and 1 to atype of “Gibbs convergence” for strongly correlated random variables. The theoremis
then used to devel op alattice-to-continuum theory for statistical mechanics.

Key Words. Sums of dependent random variables, Poisson Convergence, grandcanonical ensemble, Phase transition
AMS Classifications. 60G55, 60F05, 82A25, 82A68, 82A05

0. Introduction

The Poisson Convergence Theorem (Corollary 1.1 below) has a statistical mechanical

interpretation. Let Abe the intersection of afixed rectanglein Rd with the d-dimensional
lattice 1 Zd regarded as a subset of R9. For each sitem1 A associate the Bernoulli
random variable X | which takesthe value 1 if aparticleis present at m (with probability
pr. ) and the value O otherwise. The distribution of the collection { X } of independent
random variables may be thought of as the Gibbs distribution for an ideal gas on the
lattice A. If welet n approach infinity, so that the lattice spacing decreases to zero, and if
we maintain for each n approximately the same average density of particlesin A, then the
Poisson Convergence Theorem says that the lattice ideal gas distributions converge
weakly to the standard Gibbs distribution for an ideal gasin the continuum.

On physical grounds, one expects that a similar convergence result holds for
interacting particles. Thiswould amount to a generalization of the Poisson Convergence
Theorem for certain sums of strongly correlated (essentially Gibbs distributed) random
variables. The main parameter now becomes akind of “chemical activity” z| instead of
p... Inthe case of independent random variables considered in the Poisson Convergence
Theorem, z = p. (1-p;. )~ and an analysis based on these quantities produces an
estimate on the rate of convergence that is sharper than the standard fare when the sum of

the z1 = pr(1-pp)Lislessthan 2.



Our generalization, in the form of Theorem 1.1, allows usto develop alattice-to-
continuum theory of classical statistical mechanics including some results for the infinite
volume casg, i.e., alattice-to-continuum theory for the thermodynamic limit. In
particular we find a potentially useful criterion for the existence of afirst-order phase
transition in hard-core continuum models in terms of related lattice models.

In Section 1, we introduce notation and state and prove our generalization of the
Poisson Convergence Theorem. Section 2 is devoted to applications to statistical

mechanics.

1. Gibbs Convergence
g
Let A1 Rdbearectanglewith volume|A|. For each integer n, let d(n) = O d,(n) where

i=1
d(n)

each d; is an increasing positive integer valued function. Let |Alzh= Q z;, where z, >

m=1
0 for each m and n. Assume that the collection { z, } is chosen so that Amay be
partitioned into aregular array of d(n) subrectangles{ S, ..., S;,, }withvol. of (S})) ©

n

v(S)) = Zn . For each m and nletql T S. Wewill consider asequence of functions
z

(fy) satisfying:
Condition 1.1
afg®l
b. For each k 3 1, fx(X1, X2, . . ., Xk) iSanonnegative function, Riemann integrable on
Ak, satisfying:
i. fx isasymmetric function for each k, i.e.,
fk(Xs (1) Xs (@) - - - » Xs(k)) = fk(X1, X2, . . ., Xk) for any permutation s.
ii. There exists a constant C such that fi(x1, X2, . . ., Xk) £ CKfor al k3 0.

ii. f(x1, X2, . . ., Xk) = 0if xj = xj for somei * j.



Remark 1.1 Condition iii above restricts fx on a set of Lebesgue measure zero and is
therefore not necessary in what follows. We include it because it smplifies some of the

discussion below and because it is satisfied by our applications of Theorem 1.1.

Theorem 1.1 Let X, 1£ m £ d(n), be random variables each taking only the values 0

and 1 with density function

qa)

P{X] = &, ..., Xgy = adm} B flar,ar,) O (z)™ (1.1)
m=1
d(n)
where each g = 0 or 1 and theindicies on theright side aredeterminedby k= Q a, =
m=1
K
é a . Assume
m=1
Zn ¥a33® z>0 and AT z, ¥a3y® O. (1.2
Define
Sn=Xi+ o+ Xg - (13

Define a nonnegative integer valued random variable S by the density function,

— 0. f(Xe0x,) dx,---dx,
P(S=k) = k!nq (L4)
Qn fo(XpeenX,,) dXg---dX,

Then S, P S, i.e, Sy convergesweakly to S.

proof. .
P(Sh=k) = a P{X{ =ay, .., XZ(n) = ag(n)} (1.5

a1+"'+ad(n):k

@ g )OS (L6)
Z(n) {iy o H {1,2,....d(0)} KA mer " .



where Z(n)—1 is the constant of proportionality in (1.1). By Condition 1.1,

kdsn) d(r)
CLE - an@.. )OS

P& =k) = am k:jn) am (1.7)
5 &l g d - aOus)

kOk |1l|kl

The numerator in (1.7) is a Riemann sum converging to the numerator in (1.4). The
convergence of the denominator in (1.7) to the denominator in (1.4) follows from

Condition 1.1 and the L ebesque Dominated Convergence Theorem. [J

Corollary 1.1 (Poisson Convergence Theorem) Let {d(1), d(2),...} beanincreasing
sequence of positiveintegers. For 1 £ m £ d(n), let X, = 1 with probability p;, and
X = 0with probability 1-pj,. Let{ X/, ..., Xg,} beindependent. Assume

dn)

pr ¥%34® z > 0 and ma<p %74@0 Let Sp= X{+ -+ Xg, . Then

m= 1 1£ m£d(n)

m&mw@ﬁ (1.8)

proof. LetA=[0,1] 1 R. Define z, = p(1-py)~L. Then (1.2) holds. Also,
dep)

45 O@)" o
P{X] = &, ... Xy =2} = Ola.py +(1- a,)(1- pp)l = g—— 1 O ()™
m=1

Owrz) ™
m=1
wherea =0or 1. Choosetheq’ T S to be distinct, but otherwise arbitrary, and
fn(X1, X2, . . ., Xpn) © 1 whenever the points{x;} are distinct (and otherwise

fn(X1, X2, ..., Xn) =0). By Theorem 11,
z

. Ldxg--dx, K
P(Sh=K) %o < 10 8 i (L9)
il 1dx.---d -
nao n! Q g - P
since fn(X1, X2, ..., Xp) © L admost surely. [



Remark 1.2 Our method of proof provides an estimate for the rate of convergence for

Corollary 1.1. For simplicity and with no loss of generdlity, let d(n) = n. Sincefy £ 1,

(z)" 2 2 (Z )k

aaf (q|1’ aqlk)OV(S ) £

Replacing f, by 1 on the left side of (1.10) and subtracting the volume of all

subrectangles along any diagonal of [0, 1]k gives

z) g ey s @) S

k! ip=1  i,=1 m=1 e

for k3 2. Straightforward manipulations then give,

a2

k!
P(Sh=k) £
(S =K) % . F ot

1 8 ny2U
él (n+1)|£1 2i3=.1(2i)t'1

and

z, (Z )k e éoé éa_n_
-- €20..,6z, o u

P(Sh=k)? &

for k3 2. Inthe casethat z, = a z, =z, by (1.13),

m=1

_ 1 £ Loz
P(S=K) ~P(SH=K) £ ~e” o

k-2

& ()

.
akog @ !
——a- af @.-.a;,)OV(S)) 2 a €2a” &

(1.10)

(1.12)

(112)

(1.13)

(1.14)

for k3 2, and otherwise theleft sideis£ 0. If A ={k: P(S=k) —P(S,=k) 3 0}, then

k—2

ka [P(S=K)-P(& = k)]£ka %e k- 212

Therefore, the total variation norm,

¥

& PS=K-PS=kI<A @

k=0

a()

(1.15)



By contrast, using different methods, C. Stein [S], eq. (43) pg. 89 (see aso Chen [C],
Hodges and LeCam [H-L], and Durret [D] ), has shown that if § p =z, then

i=1

¥
o

a [P(S=Kk)—P(Snh=K)| £ 2min(z7L, 1)§n1 ChE (117)

k=0 i=1

Therefore, when é z' =z and (1- max p.)2<min (2, 2/z), our estimate is sharper

m=1 1E mEd(n)

than (1.17). Wenotethat  p' =zandd z", = z are mutually exclusive and our
i=1 m=1

estimate (1.16) can aso be derived using the methods of [H-L].

2. Latticeto Continuum Statistical M echanics
We begin with a description of the finite volume continuum theory of classical

statistical mechanics.
For aBorel measurable subset L 1 RY, et X(L) denote the set of al locally finite

subsetsof L. X(L) represents configurations of identical particlesinL. We let A£denote
the empty configuration. Let B bethes-field on X(L) generated by all sets of the form
{sl X(L): |sC B|=m}, where B runs over all bounded Borel subsets of L, m runs over
the set of nonnegative integers, and | - | denotes cardinality. Welet (W, S) = (X(RY),
Brd). For aconfigurationx 1 W, letx_ =x C L.

A Hamiltonian H is an S measurable map from the set of finite configurations Wi

in Wto (-¥, ¥] of theform

g o
HX)=a aijny) (2.1)

N=2 ¥l
where the function j \ on configurations of cardinality N isan N-body potential. The
configuration x in (2.1) is coordinatized by x = {X1, X2, ..., Xjx|}. For xI X(L), wewill

sometimes write H_(x) instead of H(X).

Define the interaction energy between x T X(L) andsC LS by



¥
W (X9 =a a i (2.2)
N=2 YCxtA&tyCs
ly| =N,y 1 xUs

where we write xUs to mean the configuration x E (s C L°). We will sometimes write
W(x | s) when x and s are located in digjoint regions. Define
HL (x|s) =HL(X) + WL (x]9) (2.3)

For abounded Borel set L, et |L| denote the Lebesgue measure of L. The symbol | | may
therefore represent cardinality or Lebesgue measure, but the meaning will always be
clear from the context. For eachil Zzd let

Qi={r R&K_12£ik<rk+1/2 k=1,..d}
so that the unit cubes{ Qj} partition RA. Define |x;|° [Xo, =X C Qjl.
We assume that H satisfies the following:
Condition 2.1

a) H istrandation invariant

b) H isstable, i.e., H(x) 3 - K |x|for someK 3 Oand all xI WE

¢) H(x) islower regular. For any L1 and L2 which are each finite unions of unit
cubeswithx 1 Liandsi Lo,

Wxlg)3—aa liHi- mllsl

iTL,jiL,

whereK >0, >darefixed.

d) H(x) istempered. There exists Rg > 0 such that with the same notation asin

part ¢, assuming L1 and L » are separated by a distance Ry or more,

Wx[9) £K & a liHI- killsl

iLiL,

) exp{H n(X1, . . ., Xn)} is Riemann integrable in any closed rectangle of RA" for

alns3 2.



Temperedness and lower regularity allow W(x|s) to be defined when sis an infinite
configuration of particles. We assume in this section that the configuration sis chosen so
that W (x | s) isfinite.

Let XN(L) be the set of configurations of cardinality N inL and let
T: LN® Xp(L) bethe map which takes the ordered N-tuple (X1, . . . , XN) to the
(unordered) set {x1, ..., XN}. Inanatural way T defines an equivalence relation on LN
and Xn(L) may be regarded as the set of equivalence classesinduced by T. Forn=1, 2,
3, ..., let dx be the projection of nd-dimensional Lebesgue measure onto Xn(L ) under
the projection T: LN® Xp(L). The measure dox assigns mass 1 to Xo(L) ={4&}. The
unnormalized Poisson measure on (X(L ), B ) with parameter z, interpreted here as
fugacity, is given by

n_(dx) = 5 Z—r:d“x (2.9)

n=o N:

If L C A=/AwhereL and A are Borel sets, then (X(L), B, n.) " (X(A), Ba, ha) may
be identified with (X(L E A), BLEa, NLEA) Viax, ~ Xa = XL E Xa.
The grandcanonical partition function in L with boundary configuration sis

defined by

Z (9= opxp{- bH(x|g)in, (dx) = é¥ ZFHI(‘D exp{-bH(x,,...,.X,|s)} dx,---dx, (2.5)

X(L)

where b in inverse temperature. The pressure p(b, z, L) for the Hamiltonian H inL is

given by

_Inz(AH

bp(b, 2,L) = 1 (2.6)

For aabounded Borel set L in R9and a configuration sin LS, the finite volume Gibbs

state with boundary configuration sfor H,b >Qand z is



exp{- bH(x|9)}
Z.(9)

The probability that there are k particlesin aBorel subset Gof L may be determined by

S, (dx|s) = n, (dx) 2.7

integrating the characteristic function for theset { x I L: [xC G =k} with respect to
s (dx|s).
We now describe | attice theories of statistical mechanicsin finite volumein a

form suitable for Theorem 2.1 below.

4
Let{ S|} beapartition of Rd by trandates of O (0, %] by linear combinations of

i=1

the standard basis vectors with coefficients of the form % wherem1 Z. For each m and
nchooseapoint g1 S and defineQ(n)° {q"}. For example, Q(n) = %Zdi Rd.
Let L be aJordan-measurable set in RY (i.e. L is bounded and the boundary of L has

L ebesgue measure zero).

Remark 2.1 The Hamiltonian H(x) restricted to Q(n) CL can be rewritten in aform more

commonly associated with lattice models. Let theinteger n be fixed. For each lattice site

qn T Q(n) associate the occupation variable (or “spin” variable) smwhich takes the value
1if aparticleis present at q, and takes the value O otherwise. Let s denote the
configuration (s, ..., Sg(n)) in the rectangle Q(n) CA suchthat 5 = 1if and only if

i1 {i1, ..., ik}. Thenwe may identify

k
H(S) = H(qu”q:l) = a a lej?"jm%lsjz'..sjm

Mm=2 j;<jp<<jp

where ‘]jljz"'jm: J m(qrjl 7 qJnm)

The grandcanonical partition function Z_ (n, s) for the lattice gason Q(n) CL

with the Hamiltonian H given by (2.1) restricted to Q(n) CL, inverse temperature b, and

fugacity zisgiven by

k
IQ(MCL l&Z .

ZL(n9= A gug A ep-bH(,...q |9} (2.8)

=0 TN gn . an ) oL



The grandcanonical pressureis then,

_InZ(n, A
PPz L) = amcLn

The finite volume Gibbs state is defined on the measurable space
({0, 13 CL B, (n)) where B (n) isthe s-field consisting of all subsets of

(2.9)

{0, 13 QM CL  Elementsof {0, 1}Q(M CL may beidentified in an obvious way with
subsets of Q(n) CL. The finite volume Gibbs state s| ( | S)n with boundary configuration

sis given by

s, (B9, =a exp{- bH(qls)} ez 4"

< 2.10
ae  Z,(ns) €n'g (2.10)

where BT By (n). The probability that there are k particlesin a subset Gof Q(n) CL may

be determined by integrating the characteristic function for the set
{ xI Q(n) CL: |xC @ =Kk} with respect to s (dx | 9)n.

Definition 2.1 Let LT Rd be Jordan-measurable. The sequence of |attice Gibbs states
{sL( |9n} converges weakly to the continuum Gibbs states| ( | s) if for any Jordan-
measurable set Geontained in L, the probability accordingto s ( | 9)n that there are
exactly k particlesin Q(n) CGconverges to the probability accordingto s, ( | s) that

there are exactly k particlesin G, as n approaches infinity.

Theorem 2.1 For afixed Jordan-measurable L] RY asn® ¥,

a) the lattice partition function Z_ (n, s) converges to the continuum partition function

Z) (9).
b) the lattice pressures pn(b, z, L) converge to the continuum pressure p(b, z, L)

c) for any s, the lattice Gibbs states s ( | S)n converge weakly to the continuum Gibbs

10



Statess ( |9).

4
proof. Let A = ([a,,b,] beaclosed rectangle with integer vertices a and bj containing

i=1

L. For conveniencerelabel { gy} sothat Q(n) C A={q;, ..., qg }-

a) Define random variables{ X!} associated with the lattice sites{ ., } taking the values
o)

0 and 1 with distribution P{ X} = ay, ..., X, =an} 1 f (a7 ....a}) O (z;)™ where
m=1

zy=zndand f, (q),...,q7 )= c . (A ,.... o )exp{-b H ((q] ..... ) |9)} and where

c .« isthe characteristic function for Lkand k isdetermined asin (1.1). Then fy satisfies

Condition 1.1. If wedefineasin Theorem 1.1 Sy = X[+ - - - + Xg, , then by Theorem

1.1,
ZL (n,9° P(Sh =01 ® PS=0)1° 7 (9. (2.12)

b) Thisfollowsimmediately from part a and the continuity of the logarithm.

c) Let Gbe a Jordan measurable subset of L and let m be a nonnegative integer. With the

notation of Theorem 1.1, let z'= zn-d and
fi (@ -00) = C e O an HeXp{-D H(Q ..., &, 9},

Where ¢ | gyen (q.....a; })= 1provided [q,....q; }CL|=m and

Kai.....al }CL\G =k —m; Otherwise € n g \ gyem (a:.....a;.})=0.
The collection {f} satisfies Condition 1.1. By Theorem 1.1, P(S, =0)-1 ® P(S=0)-1.

Combining this with part a shows that,

IR CAI K

_ 2z o n n

ZL (n,9) 1 a & dg a fk(qi17""qik)
k=0 M g Lan i amyca

convergesasn® ¥ to
k

¥
2"
z. (91a O Fbux) deyodle,
k=0 K:

11



In other words, the probability accordingto s ( | S)n that there are exactly m particlesin
Q(n) CGconvergesto the probability accordingto s ( | s) that there are exactly m

particlesin G, as n approaches infinity. [

We now show how the finite volume lattice approximation of the continuum
pressure may be extended to the infinite volume case, i.e., after taking the
thermodynamic limit. For simplicity we assume that our Hamiltonian H is given by a
pair potential with ahard-core of radius R. This has the effect of limiting the number of
particles which can accumulate in any unit cube Q; in RY. The lattice and continuum

infinite volume pressures are given respectively by

4 InZ,(n A
pr(b, 2) = b1 lim O CA (2.12)
and
p(b, z2) =b-1 VLim %E) (2.13)

where limit may be taken via an increasing sequence of cubes centered at the origin.

Theorem 2.2 If H isdetermined by a pair potential with hard-core radius R satisfying
Condition 2.1, then I|®rr¥1 pn(b, z) = p(b, z) for each b, z> 0.

proof. Let A be acube centered at the origin containing an integer number of unit cubes
of theform Q;. Let A be partitioned into cubes { Ak} of equal size and integer
dimensions. The size and number of these cubes will be determined below. Assume that

A islarge enough to make the partitions we describe below possible. With this notation

we may write,
ZN(A) = o@ exp{- bH(x C A )}O exp{- 3BW(X G A, [x G A%)}n, (dx) (2.14)

12



From the hard-core assumption and Condition 2.1c,
W(XCAXCA])?-NK a ali-jl' (2.15)
QT A j:Qjl A

for someinteger N, and the bound on the right sideis the samefor all k. Therefore,

Za(E) £ OexpleK &  Ali-ir %oOexp{ bH(X G A ), (d¥)

IQIAkJQJIAk

- (”)expi—ZNZK,_ & Al-il'yOz, s (2.16)
k . Q1 Ay 0,1 A b «
because of the product structure of na. Aninequality analogousto (2.16) holds with
Zp(A) and Z, (A) replaced by Za(n, /) and Z, (n, /) respectively.

To obtain lower bounds for Za(A) and Za(n, A), we partition A differently.

Necessarily, the hard-core diameter 2R of the Hamiltonian H is less than Ro, where Rg is

the constant appearing in Condition 2.1d. Definex 1 A to be a*“corridor point” if x lies
within adistance 3 Rg of some Ak not containing x or within adistance 3 Rg of A€ and let

C be the collection of all corridor points. Then A is partitioned by the sets C and a
collection { Bk} of digoint cubes of equal size with each By a proper subset of some Ay.

Any two cubes Bj and B; are separated by a distance of at least Rp. Let A denote the

event {xI A:xCC=/A},i.e,thereareno particlesin C. Then

Zp(A) 3 09X|0{ bH(X)}n, (dx)
= oO exp{-bH(xC B )}O exp{- zbW(x C B, [x C B})}n, (dx) (2.17)

By Condition 2.1d and the fact that Bk I Ay,

W(XCB,XxCB)ENK & ali-il (2.18)

QT A Qi AR

It follows that

13



ZA) ® Oexp|-t—2)N K& Ali-il'y oOexp{ bH(X C B, )}n (cx)

i Qi1 AjQji A b e

| Qi1 Al Af

—Oexp|-t—2)NK & Aan-ir %OZBK(/E) (2.19)

An inequality analogousto (2.19) holds with Za(4) and Z , (/) replaced by Za(n, A
and Z, (n, /) respectively.

Combi ning (2.16) and (2.19) givesfor any kK,

I%I nZA(AE)——lanA(n /) E
LNz, (B -linZ, A+ S ONK & Al (220
Al Al AL Q1 Ay Q1 A%

Taking the limit as the cube A increasesto Rd gives
bp(b, z) —bpn(b, 2) £
1 B, 1

nz - nZg (n, —bNK I - 221
20 U - BN Ze, (/D + & Aali-ir ea

| kl |Q|Ak]QJ|Ak

Now given e> 0, choose fixed Ak and By large enough so that :

—bN*K a  ali- il (2.22)
|Ak| QT A Qi1 A%
BByl >1-e (2.23)
IA kI
|—In Z, (A -—InZ; (Al<e (2.24)
A B,| kI
For such fixed Ak and By choose n sufficiently large (using Theorem 2.1b) so that
1 1
|—InZy; (A ——InZ; (nA|<e (2.25)
B " Bl °
Combining (2.21) through (2.25) gives,
bp(b, z) —bpn(b, 2) £ |A_1| Inz, (A -(1- e)[m InZ, (A —2¢+e (2.26)
k k
Hence,
bp(b, z) —bpn(b, 2) £ eIA IIn Z, (A +3e (2.27)

k

Since { |_| InZ, (A}isabounded sequence for all Ag with integer vertices, it follows
k

that

14



lim inf pr(b, 2)* p(b, 2) (2.28)

An analogous argument shows that Iing@syp pn(b, 2) £ p(b, z) which establishes the

theorem. O

A probability measure s on (W, S) is a continuum Gibbs state (or infinite volume
continuum Gibbs state) for H, b, and z if it satisfies the DLR equations, i.e., if
s (0f(xUs) s (dx | 9)) = s(f) (2.29)
for every bounded S-measurable function f from W to R and every bounded Borel set L.
The definition of infinite volume Gibbs states for the lattice models we consider is
completely analogous.
For any of the grandcanonical lattice or continuum models we consider, afirst

order phase transition is said to occur if the (infinite volume) pressure failsto be

differentiable as a function of the chemical potential m® b—2log z at some point (bg, Ny).
In case the pressure is not differentiable with respect to mat the point (bg, np), there exist
two trangdation-invariant Gibbs states whose expectations of the number of particlesin a
unit cube are equal respectively to D—p(bo, np) and D*p(bg, mp), where D* (resp. D™)
denotes the right-hand derivative (resp. the left-hand derivative) with respect to mand
where p may be either the lattice or continuum pressure, which we now regard asa
function of b, m instead of b, z (see, e.g., [K-Y] and the references contained therein).
The quantity D*p(bg, ) — D—p(bg, mp) istherefore the gap between the high density

and low density states of matter which can co-exist in equilibrium at the values b, m of

the inverse temperature and chemical potential.
The following theorem may be useful in proving the existence of first-order phase

transitions for continuum models of statistical mechanics.

Theorem 2.3 Assume that the Hamiltonian H is determined by a pair potential with a

hard-core and that it satisfies Condition 2.1. |f each element in a subsequence of lattice

15



pressures (on lattices of the form Q(n)) exhibits afirst order phase transition at by,
with the gap between the high density and low density states bounded below by a
positive number, and (b, nh) ® (b, n), then the continuum pressure exhibits afirst order

phase transition at b, mwith the same lower bound on the gap between high density and

low density states.
proof. Itisroutineto check that if (Pk(t)) isasequence of convex functions defined on a

open interval | of the real line and (Pk(t)) converges pointwise to a convex function P(t)
andtx ® tol |, then Py(tx) ® P(tg) and

D—P(tg) £ Iirk% i¥nf D—Py(tk) £ Iirp@syp D*Py(t)£ D*P(tp). (2.30)
(Here D* P (tp) and D—P (tg) denote respectively the right and left hand derivatives of the
fuction P at tg.) It follows that r!l@@ pn(bn, M = p(b, M when by® b, and that

D—p(b,m £ Iirr%i¥nf D—pn(bn, my) £ Iirr%syp D*pn(bpn, my) £ D p(b,m  (2.31)

when nh® m where the one-sided derivatives are again taken with respect to m[J
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