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Abstract.We give bounds on finite volume expectations for a set of boundary conditions containing the
support of any tempered Gibbs state and prove a theorem connecting the behavior of Gibbs states to the
differentiability of the pressure for continuum statistical mechanical systems with long range superstable
potentials. Convergence of grandcanonical Gibbs statesis also studied.
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1. Introduction

For agrandcanonical system of particles, afirst order phase transition issaid to
occur if the pressure is not continuoudly differentiable with respect to chemical potential.
First order phase transitions are also generally associated with multiple infinite volume
Gibbs states. The existence of multiple Gibbs states, however, does not imply afirst order
phase transition, as can be seen in the case of the two dimensional Ising antiferromagnet (or,
more appropriately, the equivalent lattice gas)14. Rigorous connections between the behavior
of Gibbs states and the differentiability of the pressure or free energy with respect to
various parameters have been made by a number of authors; we mention only afew.

L ebowitz and Martin-Lof! proved for Ising ferromagnets, that the free energy is
differentiable with respect to the external field if and only if the Gibbs state is unique.

L ebowitz and Presuitti2 generalized this result for unbounded spin spaces. Related work was
done for attractive specifications by Preston3. Lebowitz in Refs.4, 5 proved, among other
results, that differentiability of the free energy with respect to the inverse temperature
impliesthat only two trandation invariant extremal Gibbs states can coexist below the
critical point for alarge class of lattice ferromagnets. Lanford and Ruell€6 identified

trandation invariant Gibbs states with the tangent functionals to the pressure on a Banach



gpace of Hamiltonians (for expositions, additional references, and extensions, see Refs. 6,
2). For aclass of lattice models, RuelleB established a connection between the existence of
non-trand ation invariant Gibbs states and the differentiability of the pressure inthe
direction of anontrandation invariant externa field.

In this paper we consider long range, superstable interactionsin RY. We prove that
afirst order phase transition occurs at apoint in phase spaceif and only if multiple,
trandation invariant, tempered Gibbs states exist at that point and they yield strictly different
expectations for the density of particles. An analogous statement is proven for
differentiation with respect to the inverse temperature. Our results therefore extend to a
broad class of continuum models a rigorous mathematical connection between two widely
used criteria to establish phase transitions. To prove the main theorem we show how finite
volume expectations of particle density and energy may be bounded in the presence of an
arbitrary external configuration in the support set of any tempered Gibbs state. We aso
prove a convergence result for grandcanonical, tempered Gibbs states when the respective
temperatures or chemical potentials converge.

We note that the conclusions of our main theorem are known for alarge class of
lattice models with compact configuration space and bounded Hamiltonians (c.f. Refs. 6, 7,
3). The methods used in those references are not available here since our Hamiltonians are
unbounded and configurations of particles may have arbitrarily large local densities.

Instead we use measure-theoretic techniques and especially the probability estimates of
Ruelle®. Lebowitz and Presuitti2 obtained somewhat related results, using different methods,
for models with unbounded spin spaces, but the conditions they impose on the Hamiltonian
are not satisfied by the usual models of classical continuum statistical mechanics.

Definitions are given in Sect. 2; section 3 contains our main results.



2. Notation and Preliminary Results

For aBorel measurable subset L 1 RY, let X(L) denote the set of all locally finite
subsetsof L. X(L) represents configurations of identical particlesinL. We let A& denote
the empty configuration. Let B, be thes-field on X(L) generated by all sets of the form
{sl X(L): |s C B|=m}, where B runs over al bounded Borel subsets of L, m runs over the
set of nonnegative integers, and | - | denotes cardinality. We let (W, S) = (X(RY), Brd). For
aconfigurationx T W, letx. =x C L.

A Hamiltonian H isan S measurable map from the set of finite configurations W in

Wto (-¥,¥] of theform
Hx) =aj ' x')- hix| (2.1)

i<i
where thefunctionj isapair potential and wherehT R. The configuration x in (2.1) is
coordinatized by x = {x1, x2, ..., xXI} . For xI X(L), wewill sometimeswrite H|_(x)
instead of H(X).

For abounded Borel set L, let |L | denote the L ebesgue measure of L. The symbol
| | may therefore represent cardinality or Lebesgue measure, but the meaning will always
be clear from the context.

Define the interaction energy betweenx 1 X(L) and s C L¢ by
W (g =aaijx.s) (22

i=1j=1
wherex ={x1,...,xM and sC Lc={sl, .., s Wewill sometimeswrite

W(x | s) when x and s are located in digoint regions. Define

Hi (x]s) = HL(X) + WL (x]9) (2.3)
Foreachil zd, let
Qi={rl RU:K_12£iK<K+1/2 k=1,.d}

so that the unit cubes{ Qj} partition RA. Define Xil° |Xq, | =[x € Qj|. Foranonnegative
integer k, let Lk be the hypercube of length 2k — 1 centered at the originin R%, L isthen a

union of (2k — 1)dunit cubes of the form Q;. We will also sometimes regard L i as a subset



of zd by letting Lk represent Ly C zd.
ForiT z9orRA, let||i || = [|(i1,...i%]| = max | iK| be the supnorm.

We assume throughout this paper that H satisfies the following conditions:

a) H, | aretrandationinvariant

b) H is superstabled10, i e, there exist A>0, B2 0 such that if the configuration x is

contained in L for somek, then

Hx) 2 a Ail2-B x| (2.4)

iTL,
(Notethat if A isallowed to be zeroin (2.4), H(x) issaid to be stable.)
¢) H(x) islower regular. There exists a positive function y on the nonnegative
integers such that y (m) £ Km= for m3 1, and for any L 1 and L » which are each finite

unions of unit cubes of the form Q;, withx 1 Liandsi Lo,

Wxls 2 -aa ydi— xils| (2.5)

LT L,

whereK >0, >d arefixed.

d) H(x) istempered. There exists Ry > 0 such that with the same notation asin part

C, assuming L 1 and L » are separated by a distance Ry or more,

W9 £K & a il xills (2.6)

iTL,jTL,

Temperedness and lower regularity allow W(x|s) to be defined when sis an infinite
configuration of particles. Collections of appropriate infinite configurations are described
below. We note that without loss of generality the conditions on H(x) may be modified by
replacing each of the unit cubes Q; by cubes with any preassigned volume.

We next define ameasure for each bounded Borel set of R4, Let Xn(L) T X(L)be
the set of configurations of cardinality NinL andlet T: LN ® Xy(L) be the map which



takes the ordered N-tuple (X1, . . ., Xn) to the (unordered) set {x1, ..., XN }. Inanatura
way T defines an equivalence relation on LN and Xy (L) may be regarded as the set of

equivalence classesinduced by T. For N=1, 2, 3, ..., let d\x be the projection of nd-
dimensiona L ebesgue measure onto Xn(L) under the projection T: LN ® Xy(L). The

measure d’x assigns mass 1 to Xg(L) = { &}. Define d\x to be the zero measure on

¥
Xm(L) for MEN. OnX(L) = |J Xn(L)
n=0
¢ d"x
n,(dx) = :’;:10 Y

If L C A=/AwherelL and A are Borel sets, then
(X(L), BL,n) " (X(A), Ba, na) may beidentified with (X(L E A), BLE A, NLEA) Viax,
" xa =X_ E xa. Inparticular, for any bounded Borel set L,
(WS) = (X(L),BL) " (X(LY, BLO) (2.7)
Let I§L denote the inverse projection of B under the identification (2.7) so that éL isa
s-field onW.
LetL beabounded Borel set in Rdand let sbe aconfiguration in LS. The finite

volume Gibbs state with boundary configurationsfor H, b >Qand his

exp{- bH(x|s)}

7.9 n, (dx) (2.8)

m_ (dx]s) =

whereZ| (s) © Z (b,h,s) makesm (dx|s) aprobability measureand b isinverse

temperature. Whens= /& letm_(dx| /) © m_(dx).

Definition 2.1 The pressure p(b, h) for H is given by
InZ
P(b, h) = Iimﬂ

@y L]

(2.9)

where P(b, h) =bp(b, h)

Remark 2.1 Thelimitin (2.9) is well-known to exist910 and to be a convex function of

b and h for the models that we consider, and it is also possible to consider more genera



limits than described above, but thisis as much aswewill need. We note some general
properties of convex functions on intervals which we will use later: Derivatives exist except
possibly at countably many points. Right and left hand derivatives exist at every point, and
the left hand derivative at a point Xg isno larger than the right hand derivative at xo. If the

derivative of aconvex function exists at a point, then the derivative is continuous at that

point. If Pisaconvex function differentiable at bg and if P, are convex and differentiable
at b with Py(b) ® P(b) pointwise, then Py'(bg) ® P(bg).
Let {pL} denote the specification associated with b, h and the Hamiltonian H (see

Preston3 [pg 16] defined by
PL(A |9) = m (dX|s) (2.10)
where A’ ={xl X(L):xUsT A}. This specification is defined with respect to the sets
{R_} asdefined by Preston and is consistent3.
A probability measure mon Wis a Gibbs state (or infinite volume Gibbs state) for
H,b,and hif
m(pL(A [9)) = n(A)
for every Al Sand every bounded Borel set L.
A functionf: W® R isacylinder function if there exists afinite volume L such that
f(s) =f(s.) foral sl W. Asst AT Sisacylinder setif theindicator function for A isa

cylinder function.
Following Ruelle® we define a Gibbs state mto be tempered if mis supported on

¥
Vy = U VN
° N=1
whereVN={xT W: @ [xi|2£ N2|Ly|foral k}. Thefollowing proposition collects

L,

some results proved by Ruellein Ref. 9.

Proposition 2.1 (Ruelled) Let L be afinite union of unit cubes of the form Q;. Suppose
L E L isabounded Borel set in RA. There exist constants g> 0and d, depending only on



b and h (independent of L and L )such that the probability that [x,_ | 2 N |L|with respect to
m (dx|A) isless than exp[—«gN2 —d)|L[]. The same probability estimate holds when

m: (dx|4) isreplaced by any tempered Gibbs state for b, h. Moreover, for any b,h, the set

of trandation-invariant, tempered Gibbs states is nonempty.

With Proposition 2.1, it is possible to describe another support set for tempered
Gibbs states. Let In.r =max{1, Inr}. Define
Un={sT W:|si|£n Jfin,[li]| foralil z%
Uy = CJ Un (2.11)

n=1
A graightforward argument2.11 shows that n{Uy) = 1 for any tempered Gibbs state m
The following lemmawill be used to control the effect of boundary configurations

on certain expected valuesin the next section.

Lemma2.lLlete>0andd Up. Thenforal k sufficiently large,

a W (Xls) * —Dk(s) [xq, |—enix_ |

b. |[W_ (XCLm|9)|£en|x_|
where m isthe greatest integer £ k — Ce (In k)Y( - | Cq isa constant for each e
independent of k, ILx = Lk\L m , and Dk(s) £ Cn \/m for some constant C.

proof. For smplicity, wewrite Lk = L. By lower regularity,

W, (x93 K aa li4I- xlls

iT LT LS

© K el max & [l sl K b I max 8 i1 s

it L ™oL

Wefirst show
Dk(s) ° Kmax g li-ill = Isjl£Cnink

iTLS

Sincesl Up,



D9 £nKmax @ il JinTl (212)

LS

Let ipg maximize the sumin (2.12) so that

D EnK A il il
L%
With £=j —io,

D@ £nka 2117 I

no
£nkKa |12 Jin @D +ink

no
EnkJnkKA 121 JIn €2
no

o Cn,/lnk

We next show that with an appropriate choice of Ce,
Kmaxd [i-ll~ Is|£en (2.13)

™oL

for adl k sufficiently large.
Kmax @ [l I51£nK max @ [ill= il (214)

™l L% ™l L%

EnK & lliodll~ Nl

it L%

whereig maximizesthe sumin (2.14). With /=] —ig and C(d) a constant for dimension d,

Kmax @ fiI4 I5lenk & e~ Jm(Em)

™l L% I1]R k- m+1

£EnK A& |len S Tn m

lielFk-m+1

£nK JiIn m a e= Jin i

141 Ce (Ink) ¥~ +1
£nc(d) Jinm d:(mk)w_d) XL D72 gy
£nc(d) C.7 2( —d)L (2.15)
where Ce is chosen so that C(d) C;ﬁj 2(I —d)~l<e Thuspart aisproved. To obtain the
lower bound in part b, observe that from part a,
W, (XCLm[s) * —Dk(s) |H-en|x_|=—-en|x_|
The upper bound for W, (XCL | s) issimilarly established from the fact that the



Hamiltonian is tempered and that the distance between L and L, islarger than R, for

sufficiently large k.

Remark 2.2 It follows from the proof of Lemma2.1that W (x|s) ® —Dk(s) [x, | for all
Kk, by redefiningLk=qL,Lm= A&

For the convenience of the reader we conclude this section with two known results
from measure theory which we will usein the next section. Thefirst is a generalization of

the L ebesgue Dominated Convergence Theorem [c.f. Royden!?].

Proposition 2.2 Let (X,B) be a measurable space and { m,} a sequence of measures on B

that converge setwiseto ameasurem Let {f,} be a sequence of measurable functions

converging pointwiseto f. Suppose [fn| £ g and that I|®rr¥1 opdm, = g dm <¥. Then

limc,dm =G dm

A measurable space (X,B) isastandard Borel space if there exists a complete metric

gpace Y such that B iss-isomorphic to the Borel s-field By of Y, i.e, thereisabijection
from B to By which preserves countable set operations. The measurable spaces (W, S) and

(X(L), BL) considered in this paper are standard Borel spaces. The following proposition

has been used by Parthasarathy Ref.13 pg 145 and Preston in Ref. 2 pg 27. We provide a

short proof for convenience to the reader.

Proposition 2.3 Let X be uncountable and (X,B) astandard Borel space. Thereexistsa
countablefild Bg1 B such that B = s(Bg) and such that if m Bo ® [0,1] isafinitely

additive probability measure on Bg, then mhas a unique extension to a (countably additive)

probability measure on (X,B).
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%
proof. (X,B) isisomorphic as a measure space to (O {0,1} with the product Borel s-field.

i=1

¥
Let By bethefinite s-field generated by thefirst n factors. Then |JB,, isacountable field.

n=1

¥
Any finitely additive probability measureon [JB, is consistent on {Bn}. The result now
n=1
follows by the Kolmogorov extension theorem.

3. Principal Results

Lemma 3.1 There exist functions g1, ¢p, g3 on Uy, integrable with respect to any tempered

Gibbs state such that for al k sufficiently large,
|L G L m, (09 < 09

(xIs) m., (dxI3)| < g2(9)

(xIs) m., (axi9)] < ga(9

Remark 3.1 The integrable boundsin Lemma 3.1 may be chosen to hold for all k; we find

bounds only for al large values of k in order to streamline the proof.

proof. Observethat for any function f on X (L),

. Of(x) & ™" "Pm (dx)
Of(X) m ., (dx|s) = c\ﬁ-bka X9 m. () 3.1

Lete>0andsl Up. Inwhat followsweidentify Ly, Lm, and L © fLk, asin

LemmaZ2.l. Let .
Jilifxli L 35
¢ =10 otherwise (32)

Then using the product structure of n__
m, (@) 2 ge(xe

N - bW, (X]s)

(02 m., (dx)
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1 . ] )
— G:(X)e bWLk(X|S)e bHLk(X)nLk (dX)

ZLk ([E) X(Lk)

1 N < _-bWi, (X|ISCL%) -bHL _(X)
=7 O o0 et n. (dx)n_ . (dy)
Lk('CE){ﬁE} X(L m)

Z, (A
m.. (dx)m

3 ée_ ber*x LmI

Therefore by Jensen’ sinequality,

-bWL, (XI9)

In g m, (dx) * -bengjx, | m (dx)+InZ (M- InZ (A (3.3)

We next bound dem| m__(dx) using Ruelle’s probability estimates (Prop. 2.1).

¥
m, (@x) = gm X, X, [>YIL [} dy

1 .
deLm

£ o 10y+8 owl- (o7 - L Doy

d » -
£ \E; Q; &Pl glL L[y - NESEY

g\ﬁ+/ P (34)
o VL,

where d and g are the constants appearing in Proposition 2.1. Since |Lk| > |L |, (3.3) and

(3.4) give,
é ’ u

In c\p-bWLk(XIS) rT]_k(dX) > _bené\/g“_ k|+ %gkll:ﬁ-lnsz([a_ InZLk('CE) (35)
e u

To bound the numerator in (3.1), observe that for any ¢ > 0, and any union L of unit cubes

inLkg,

A CX

¥
G Im, () = gm  {x, e™ ' >y}dy



¥
= qQm X, Ix. |>TI|L|} dy

EPI|L gl N (l ny)2
<Q 1dy+pr[<zc2|u>/g1 expi-g L] +diLlray

diLl X

<expl(@e?IL] /gl+ €™ .y Ty

<exp[(2c*|L] / g]+ expldIL |- (2¢*|L )/ g]
< 2exp[(d+2c®/ g)IL|]

For any a2 0, it followsfrom (3.6) and Lemma 2.1 that

alx| e bW, (xls) 20D ()X Ie(bﬂe+a)|><Lk|

(o m, (&) £ e m_, (dx)

£ ((\)92ka(S)|xﬂL| m. (dX))llz ((\)ez(bne+a)|x| mk(dx))llz

£§%exp[(8b[;k(s) +d)IﬂLI] giexpus(b”e O

4(bne + a)?

= 2expg + )L [+(

‘"OLQ(S) L, |u

Using Jensen’ sinequality and (3.1) gives

[XL ) |

O Im, (@xl9) £1n g™ 'm_, (cxi9)

- bW, (x]s) - bWy, (x]s)

Eingegle m , (dx)—In ¢g m_, (dx)

Combining (3.8) with (3.5) and (3.7) witha= 1 gives

(3.6)

(3.7)

(3.8)

12
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1. 2D, (92 , dO|fL|, Abne+1)? d  In2
—dx dx|s) £ k +
L] L m. @9 £ g 2oL g 2L

L 1 1
+ben Inz, (A+—InZ_ (A (3.9
e\f \/4g|L HRTIT . T

By Lenma2.1 Dk(s) £ Cn \/In k. Thereforethe right side of (3.9) is aquadratic

polynomial in n:

Ca(k) nZ + C1(k) n + Co(K),
where0 £ C; © supk Cij(k) <¥ fori=0,1,2and

n°n(s)° min{ml Z:sl Un} (3.10)
Define with (3.10)

gi(s) =Ca2n?+ Can+Co

If misatempered Gibbs state, it is easy to show, using Proposition 2.1 that there exists a

constant D such that
mU:) £ D exp[-gm?] (3.11)
for dl m sufficiently large. Thus
2 ¥
(9 Mds) £ & C,a m' mU;, ) <¥ (312)
i=0 m=1

This proves part aof Lemma 3.1.
To prove pat b observethat by Lemma2.1,
1
.| QW (x|s) m, (dx|s)® _|_| P OXg | m, (AXls)—Ce
k

X

L ol
From part a, the second integral on the right is bounded below by —eg1(s). To bound the

m_, (dx|s) (3.13

first integral on the right side of (3.13) notice that by Jensen’sinequality and (3.1)

P ©Kql m (dxls) £1n ™" m  (dxl9)

D@y | o BW, (X9 WL, (XIs)

£lnce m, (dx)—In e m_, (dx) (3.19)

Applying (3.5), (3.6), and Lemma 2.1 as before shows that the right side of (3.14) is



bounded by a polynomial in n(s) which isintegrable with respect to any tempered Gibbs
state.

On the other hand, by Jensen’sinequality and (3.1),

PW,, (xls) m (dx|s) £ 1n "™ m  (dx]s)

ée+bwLk (xIs) e bW/, (xIs)

N bW, (X]s)

(02

m (dx)
m_, (dx)

=In

- bW, (XI5

=—Ince m_, (dx)

€ [d p[L U
£ beng |- |L |+ [—=~'g-InZ,_(B+InZ (B (3.15)
e\ g 49 U "

where the last inequality comes from (3.5). Dividing both sides of (3.15) by b |Lg| shows

that
1

IC.l OW., (x|s) m, (dx|s)
is bounded above by alinear function in n(s) with coefficients bounded in k. Henceit is
bounded by a function go(s) integrable with respect to any tempered Gibbs state.
By stability of H(x),

1 . 1
L g1, (xls) m, (dx[s) i) O BIx[+W_, (x|s) m_, (dx|s) (3.16)
k k

Theintegra on theright is bounded below by alinear combination of the functions g;(s)
and go(s) from partsaand b.

To find an upper bound, write
PH., (Xl9) m_ (dx|s) £1n ¢

bH L, (x|s)

m, (dx[s)

N e+bHLk (x]s) e— bW, (x|s)

m_, (dx)
m_, (dx)

= In N -bW,_k(x|s)

(02

14
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+bHLk (X)

o€ n,_ (dx)
n - X|S,
Z, D" m (dx)

e’bHLk ()

éLkl
n - X|S,
ZLk(ﬁa(\?bWLk( [s) n']_k(dX)

¢[d pIL Y
£ beng [- L |+, [—g-InZ (A + |Ll (3.17)
e\ g 49 0 "

where in the last inequality we have used (3.5). Dividing both sides (3.17) by b |L k| shows

that

1.

] I, o9 m., (as) (318)
k

is bounded by alinear function of n(s) with coefficients bounded in k and (3.18) is

therefore bounded by an integrable function of s.

Lemma3.2 @) For any sT Uy
lim O—‘WLk(Xls) (dx|s) = O
ke¥ = L] i

b) For any tempered Gibbs state m
W Ix,)
lim
k®¥ ||_k|

m(dx) = 0

proof. Since

OW(x,, Ix . )(dx) =N, , (xIs) m., (dx|s) m(ds)

part b follows from part a, Lemma 3.1b, and the Dominated Convergence Theorem.

From (3.15) W (9
lim sup OILL—I m, (dx|s9) £ en(s) (dig)V2 (3.19)
k

where we have used the same notation asin the proof of Lemma3.1. Sincee>0is

arbitrary,



lim sup 0& m, (dx|s) £0 (3.20)

k® ¥ | |

From (3.5), (3.13), (3.14), and Lemma3.1a

Oy | g BWy (X9

OW,, (xIs)m , (dxls) * —ega(s)|Lkl—In ¢p” m_, (dx)

€ d pIC, Y
-beng[=|L |+ [—= ¢+ InZ, (B-InZ,_ (B (3.21)
e g 4g u m k

It is necessary to bound the integral on the right side of (3.21) differently than in the proof

of Lemma3.1.
@DK(S”XWJ e‘ bw Ly (xIs) (dX) £ 03(b+l)Dk(S)|X |ebre|XL [ k (dX)
. Z, (b,h +ben, /&)
x_(b+1)D (9)IX,, | L
= A ax : 3.22
& AN Y+ 322

where m. . isthefinite volume Gibbs state for s= A and h replaced by h+ben. By (3.6)

(3.23)

1&@(b+1)?D,(s)? ~0_ U Z (bh+ben A
m, (dx) £ 2exp|8 5 +dj‘ﬂL% Z (oA

where d and g are the constants from Prop. 2.1 for h replaced by h + ben. Combining

DSy | bW (<)

(3.23) and (3.21) gives

(Lkl) , Lol 1
UETITI be”e\f \/29|L LI e B el

R(b+1)°Dy(9? O] In2 1
9 ) I T | O B |

InZ, (bh+benA  (3.24)

Therefore,

16



WX |9
lim inf
k® ¥ ||_k|

m, (dxls) * —eb n(s) (d/gV2 - eg(s)

+ P(b,h) — P(b, h+ben) (3.25)
By continuity of the pressure]c.f. Ruellel0] in h and since e > O is arbitrary,

Wi I9)
lim inf —————m_ (dx|s) 3 0 (3.26)
e L

Inequalities (3.20) and (3.26) establish part b.

It iswell known that thelimit P(b, h) in (2.9) is unchanged if the empty

configuration Zin Z, (A isreplaced by an arbitrary configuration s for standard lattice

models (seefor example Refs. 7,2). In Corollary 3.1 below, we prove that thisisaso the

case for our continuum models, provided that the configurationsT Uy.

R CInZ, (9
Corollary 3.1 Forany sl Uy, lim————= P(b,h)
k® ¥ ||_k|
proof. For any k,
+bW L, (xs) g Pt
Z (A= oe B Z— n., (dx) X . (9 (3.27)
X(L«k) Lk(s)

Taking logarithms and using Jensen’ sinequality gives,

InZ, (A3 InzZ_ (9 + bc‘)WLk(x|s) m , (dx|s) (3.28)
From Lemma 3.23,
. 1
Ilrk%syp“_—kl InZ_ (s) £ P(b, h) (3.29)

Assuming k is sufficiently large and using the same notation asin the proof of Lemma 3.1,

z,. 92 e ecn,, (dx)
X(L«)

17



N N - bW, (XGLmIsGLE) -bHL (x)
=0 0° « et an(dX)nLk\Lm(dy)

{A X(Lm)

2 ge " rlm (a2 (@

Thus, using Jensen’ s inequality again shows

InZ, (9% InZ_ (A —enbgx, |m _(dx)

Applying Lemma3.1agives
1 Ll 1 L |
—InZ (s 3 = —1InZ (A —enb—= g1(A
L LIl " L]
Thus

o 1
Ilrkr(1®|¥nf“_—kI InZ_ (s) * P(b, h)—enbg1(A)

Sincee> Oisarbitrary,

o 1
l'%'¥nf||__k| InZ,_ (s) * P(b, h)

Combining (3.32) and (3.29) proves the corollary.

18

(3.30)

(3.31)

(3.32)

Lemma 3.3 LetL beabounded Borel set , Fi I§L ,n3 Landlet 11 and I2 be closed

intervals on thereal linewith |1 to the right of zero. Then

a) pL(F | sCLk) (b,n)® p_(F|9) (b,h) uniformly for all s Up, bl 11, andhl 15 as

k® ¥.

b) if L°L | for someinteger L, p (HL(X) | sSCLk) (b,h)® p.(HL(X) | S) (b,h) uniformly

foralld Up,bl I1,ask® ¥.



19

xpl- bH (x|9)} n, (dx)

f. i h)=E& 3 1, it suffi
proof. a) Since pL(F | s) (b,h) Sl b, (9 . (@) and Z_ (s) ® 1, it sufficesto

show that Cpxp(- bH, (x|sC L )}n_(dx) converges uniformly to
G

Opxp(- bH, (X9} n, (dx) forany GT B, . Observethat |e?—ed £ M |b—a| for any M
G

bounding e on an interval containing aand b. Thus, by Lemma2.1 and Remark 2.2, for

any e>0, thereexis mandk suchthat L 1 Lm 1 Lk and for dl k sufficiently large,
lexp{—bHL (x|s)} —exp{—-bHL (X|sCLk)}|

£b|W, (x_|sGL%)lexp{b[B+nC/Inm]x_[}

£ ben [x_| exp{ b[B+nC/Inm]x_[}.

Hence
| gexp{- bH_ (xIs)} n, (dx)— Gexp{- bH (XIs G L )}, (dX)]

£bend jexp{b[B+nCnm]j} |E—Ir . (3.33)
=0 :

Theright side of (3.33) isfinite and continuous in b and h. This completes the proof of part

a
AnPHL (XI9) -bH (xIsCL ) ()

_ o ol P
B) PLHLK 19 ~RL(HL) [SCLW) = 3 (g5~ - G o i (9=

- bH_ (xls) -bH | (X|sCL ) -bH (xIs) - DH, (XIsCL )

N e e N e e
O T Zise M T ORIy Zse Ly

n (dX)

(3.34)

Sn PHL (xI9) -bH (XISGL )

e
where the symbol [-] in (3.34) represents & - 1. Wewill caculate
Rt PACIA I

upper and lower bounds for each of theintegralsin (3.34).

- bH (xIs) -bH | (x|sCL )

(\)HL(X)e -

O 7y Zose MW



bH (x]s) e—bHL(X|SQL )

Al - BIx [4E n, (dx)
”308"" 2.9  Z.(CLy

_ Bz ee bH, (x]s) e—bH L (XIsCL ) 1 u

El | Ou- 70 Z (Sng)u n,_(dx) (3.35)

Theintegral in (3.35) converges to zero uniformly inb and s Uy, by part a. For an upper

bound, observe that for e> 0,

- bH_ (xls) -bH| (x|sCL )

e e
A H, (X) - n, (dx)
Oz T zise|
1 R _bH, () e'bWL (xIs) e bW, (x|sCL )
=— obH (X)e ™ - n, (dx)
b, 07" 29  Z.G6CL)l "
1 - bW (x]s) - bW, (X|sCL )
—éf' S n, (dx)
Z () Z,(sCLy)
1_ bWL(XISCL k) ZL(SCL k) e-bWL(XISCLT() 4y (dx)
" b¥Z (sCL)| Z.(9 )

Sl-c\)abD,_(s(;Lk)|x|} Z (sC Lk)le-bWL(x|sQL°k) ) 1|+‘1_ Z (sGL,) [':InL(dX)
b S Z.9 |p
1. qumﬁ", Z (sCL,) befxin Z (sC Lk)
<-— [ —t—= K be|x|ne”™" +[1 - n, (dx) (3.36)
0® Tz Zo b

when k is sufficiently large. A routine calculation now shows that (3.36) can be made

arbitrarily small for all Sl Upandb T 11 by choosing k sufficiently large (and e sufficiently
small).

The second integral in (3.34) has the same upper and lower bounds. It follows that

(3.34) convergers uniformly to zero ask® ¥ .
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Theorem 3.1Let Q° Qg = Lk=1 bethe unit cube centered at the origin.
a) The expectation

Ho(X) + 3 W (X[x,.) m(dx) (3.37)
isthe same for any trandation invariant, tempered Gibbs state mfor H, b, h, if and only if
P(b, h) is continuoudly differentiable at bg.
b) The expectation

Ox € Q| m(dx)
isthe samefor any trandation invariant, tempered Gibbs states mfor H, b, hy, if and only if

P(b, h) is continuoudly differentiable at ho.

Remark 3.2. Theorem 3.1 may be modified. In equation (2.1), one may assume, if desired,
that h :E for some “chemical potential” h independent of b. Inthisway bhis

independent of b. With this convention, b isthe coefficient of the particle interaction

energy and his, independently, the coefficient of the particle number in P(b, h). Note also

that (H o(x) + 2 Wy, (X[xge) M(dx) = LI@FQ ||—i| OH., () m(dx) by trandation invariance of
k

mand Lemma 3.2, so that part aof the Theorem 3.1 may be reformulated. Therestriction
that Q =L 1, the unit cube, in Theorem 3.1 may berelaxed. Q can be chosen to be any
geometric solid whose trandates partition R, such as arectangular solid. The underlying
|lattice Z9 must then be replaced with another lattice, L then becomes a union of translates
of Q for each k, Uy isthen changed, etc.

Proof.

a) Since P (b,h) isaconvex function of b, Pis differentiable on a dense subset of the

positivered line. Supposethat Pisdifferentiableat b. For any kK, |L_1||n Z, (s) isconvex
k

and differentiable with respect to b for any sl Uy. From Cor. 3.1, it follows that for any

point b where Pis differentiable,



dP _

db k®¥ ||_ | O, (xIs) m, (dx|s)

Let mbe atrandation invariant, tempered Gibbs state. From the L ebesgue Dominated

Convergence Theorem and Lemma3 1 we have
dpP

i |L | O0H., (XIs) m_, (dx|s) n(ds)

By the definition of a Gi bbs State,

dap .
db k®¥||_ |d_|Lk(X|XLc)n’(dX)

By Lemma3.2,
dpP

B im.o— “_ | e, (%) max) (338)

Now write

Hi, (0= @ Hg 00+ 3W(Xg, Ko, )]

= & [Hg, () +3W(xg X0 )]- 3W(X,, IX,.) (3.39)
where the sums are over al i suchthat Qj I Lk. Combining (3.38) and (3.39) and using

the trandation invariance of mgives

= Ho00 + § Wikl ()

WO )
- 3lim g—————(dx) (3.40)
SR
From Lemma3.2
dr .
05 = Oo()+ 2 W(kelxg:)mdx) (3.41)

Thus (3.37) isthe samefor al trandation invariant Gibbs statesif P is differentiable at bg.

Let
9(x) = Hq (X) +2W(XglX o) (342)

and let {bm} bechosensothat b, b oandsuchthat P(, h)isdifferentiable at each b,.
d'pP dpP

Let — and ™ denote respectively right and left hand derivatives of P (see Remark 2.1).

db

Then

OI—P(bo, h£ lim —(b h)

22



= lim cg(x) m, (dx) (343)
by (3.41) where my, isatrandation invariant, tempered Gibbs state for H, h, bm.

The next step isto show that for some subsequence of { My} which we again denote

by {m},

lim G(x) m, (dx) = G(x) m(dx) (3.44)
where mis atrandation invariant, tempered Gibbs state for H, b, h. Then by (3.43) and
(3.44),

d'P .

B (bo, h) £ Cp(x) m(dx) (3.45)

|
An analogous inequality bounding %} (bo, h) below, together with the assumption that g(x)

has the same expectation with respect to any trandation invariant Gibbs state at bg will
provethat Pis continuoudy differentiable at bg.
LetA . be the countable field given by Prop 2.3 for the s-field I§L . Define
A,=UA
¥© M L (3.46)

Since A 4 1Scountable, some subsequence of { my}, which we again denote by { mmy}
converges for each element of A - Definem(A) by

MA) = lim mn(A) (3.47)
By Prop. 2.3, for any fixed k, mhas a unique extension to I_5>L _ which we again denote by m
Let FI I_5>Lk and sl Uy. Recall that F={xI X(L):xUsT F} andinthiscaseF is
independent of s. Then

p., (Fls) £ (\ﬁXp{' bH_ (X[s)}n_, (dx)
.

£ Spepl- blLill)(lz +b(B +n(s)C/Tn, K)[X[}n, . (dx)

i .U
£ max | expf- b“_i||x|2 +b(B +n(s)C,/In, k)[x}:[x[l Rgnl—k (F9
I k

° M(b,h,k,n(s)) n_, (F9 (3.48)

where we have used Remark 2.2, superstability, the observation that Z; (s) 3 1 for all sand
L,and
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o &, 0 )
A a|Xi|23 AQalinE |Lk|l

L, i L,

It follows from (3.48) that { p_, (F|s) (bm,h): m=1,23,..., and d Up},whereb “boas
above, is uniformly absolutely continuous with respect to the measure on I§L _given by
wk(F)° n_ (F9,i.e,givenany e> 0, thereexistsah > 0 (depending on n) such that
p., (FIs) (om,h) <efor al mand sl Up whenever wi(F) < h.

From Prop. 2.1 all tempered Gibbs states for a given value of b and h satisfy
Ruelle' s estimates for the same values of gand d. It follows from the proofsin Ref. 9 that
the same values of g and dmay be selected for the entire sequence of tempered Gibbs states
{mm} givenin (3.43) correspondingto b, b (infact, g=(bg A)/4 may be used).

Let e> 0 be given. Choose n so that mi(U ;. ) <2 for dl m. Choose h >0 so that
P, (FIs) (om,h) < e&2whenever wy(F) <hand sl Up. Then

Mn(F) = Mn(p, (FIs) (bm.h))
= 0P, (FIs)(by,.h)m,(ds)+ @p., (Fls)(b,,,h) m,(ds)

U
<g2+e2=¢e (3.49)
Thus given any k, the measures { my} restricted to I§>Lk are uniformly absolutely continuous
with respect to w.
LetL | Rdbe abounded Borel set and let F1 B, . Without loss of generality, we
may assumelL = Ly for somek. Let e> 0 and choose h asin (3.49). Sinces(,&L )= I§L ,
thereexistsan Al A, such that (A DF) < eand w(A DF) <h .
Here A DF = (A\F) E (F\A).
By the triangle inequality,
[M(F) —mMF)| £ [Mn(A) —m(A)[ + min(A DF) + (A DF)
£ [mn(A) —mA)| + 2e (3.50)
It follows that
m(F) = lim mn(F) (3.51)

foral F1 I:%L . Equation (3.51) shows that n(F) is consistently defined on the increasing
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sequence of s- fields{éLk }. Sincethese s- fields generatethe s- field S, mhas a unique
extension (e.g. by Kolmogorov’s Theorem) to a probability measure on (W, S) which we
again denote by m The trandation invariance of mfollows from the trandation invariance of
Ny and standard arguments in measure theory.
We next prove that mis a Gibbs state for bg, H, h. It isroutine to verify that
PL(F[s) (bmh)® p.(F[s) (boh) (3.52)
for each d Uy, each L, and each measurable set F. By the triangle inequality,
[min(PL(F |'S) (bm,h)) —nfpL (F [ s) (bo,n))| £
[min[PL (F | SCLk) (bm,h)) —ntpL (F | SCLk) (boh)]|
+ [MlpL(F |'S) (bm,h)—pL(F | sCLk) (bm,h)]|
+ [MpL(F ') (bo,h) —pL(F [ sGLk) (bo,h)] (3.33)
It follows from Lemma 3.3 and arguments similar to those leading to (3.49) that by
choosing k sufficiently large, the last two terms on the right side of (3.53) can made
arbitrarily small, uniformly in m. By Prop. 2.2 and (3.52) the first term on the right side of
(3.53) convergesto zeroasm® ¥for any fixed k.
Thus
Min(PL(F |S) (bm,h)) ® nbpL (F | s) (bo,h))
Sincewe aso have
Min(PL(F ['S) (bm,h)) =mn(F) ® nfF)
for any cylinder set F, it follows that mis a Gibbs state. It is easy to check that mis tempered
using the fact the the same constants g and d may be used for each m,.
It remainsto verify (3.44). Let
9o (X) = Ho (X) + 3 W(Xq, [Xq.)

For agiven positiveinteger L, letL © L. Then, asin (3.39)

a o, (X) =HL () + $W(x_[x,.)

ilL

Therefore
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M@ o, (x)) = L] (@) = n(HL () + 3 mW(x_[x,.))

ilL
and hence

_ 1 p 1
m(g) = “_ln(HL (X)) + 2 ™

for any trandation invariant tempered Gibbs statem Thus

IMhn(@) — M(@)] £ — [M(HL) = Min(HL)|

MW (X, X))

L
Lo WX X ) W(x,_[x,.)
+ zl”(T)—mn(T)l (3.54)
We first show
1 1
lrlmn(HL) ® mHL) (3.55)
forany L (L © L) by proving that
Mn(PL(HL [S) (bm,h)) ® nipL(HL |s) (bo.h)) (3.56)

In all that follows, h will be fixed and we therefore omit it from the notation.
IMn(PL(HL |'9) (bm) —ntpL (HL | s) (bo)

£ [mn(pL(HL | SCLk) (bm) —npL (HL [sCLk) (bo)l

+ [Mn(PL(HL |'9) (bm) —mn(pL(HL | SCLk) (bm)l

+ [m(pL(HL [ s) (bo) —m(pL(HL [sCL) (bo)l (3.57)
For L ° L sufficiently large, using the notation of Lemma 3.1,

l%l IPLHL [9) (b)] = l%l GH. (19 - W, (9] m_ (cxIs)

£ go(s) + 93(s) (3.58)
It follows from the proof of Lemma 3.1, that we may choose (since n(sCLk) £ n(s))

gi(sCLy) £ gi(s) for al k, sl Uy, andi =1,2,3. Since, in addition each g isapolynomial in
b and apolynomia in n(s),
IpL(HL ') (bm) —pL(HL | sCLk) (bm)| £ G(s) (3.59)

where G(s) isa polynomia in n(s) and is independent of m.

Since the same constants g and d may be used for each m,



NG m,(ds) £a £m,(U,) (3.60)

)3
U,C\‘ /3N

convergesto zero uniformly inmasN® ¥, for any j (c.f. (3.11)). Then for any e> 0, there

exists an integer N3 1 such that
O5(s) m,(ds) <e (3.61)
ug

for al m. We may aso assume (3.61) holds when my, isreplaced by m Then the second

term on the right side of (3.57) may be bounded as follows:
[Mn(pL(HL |S) (bm) —Mn(pL(HL | SCLK) (bm)|

£10Q [pL(HL |s) (bm) —pL(HL [SCLL) (bm)] Mn(ds)]

Un

+ OB(s) m, (ds) (362)

It follows by (3.61) and Lemma 3.3b that the right side of (3.62) may be bounded
uniformly in m by an arbitrarily small number, when k is chosen sufficiently large. The
third term on the right side of (3.57) is similarly bounded.

Following essentialy the same argument as above, leading to (3.58) and (3.61),
there exists afunction F(sC L) independent of m, such that

IpL(HL [sCLk) (bm)| £ F(SCLK) (3.63)
and (3.61) is satisfied when G(s) is replaced by F(sCL ).

Given any e>0, thereisan integer N2 1 such that F(SC L) isthe sum of a bounded
measurable cylinder function, namely its restriction to Uy, and an unbounded function (its
restriction to U%y) such that the integral of the latter function with respect to mor my, isless
than e uniformly inm. A smple application of the triangle inequality and (3.51) shows that

Mn(F(SGLK) ® niF(sCLk)) (3.65)
for any k. Combining (3.65), (3.63), and Prop.2.2 proves that the first term on the right
side of (3.57) can be made arbitrarily small for any given k, by choosing m sufficiently
large. Thus (3.56) and (3.55) are proved.
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We next show that by choosing L © L sufficiently large, the second term on the

right side of (3.54) can be made arbitrarily small, uniformly in m. Since the arguments for
this are similar to those given above, we provide only an outline.

The second term on the right side of (3.54) equals

0 m () m 09 - Qi m(el) e [(3.66)

where we have suppressed the dependence of m_ (dx|s) on by or bg. Given N2 1, it follows

from (3.15) and (3.24) that the integral

W (xIs)

T M@0,

converges to zero uniformly inmandsl Uy, asL ® ¥ . From the proof of Lemma3.1, it

follows that there exists afunction P(s) such that

lLLL( D m (@9 0,1 £ Pe9 (367)
for al L sufficiently large and all m such that (3.61) is satisfied when G(s) is replaced by
P(s). An application of the triangle inequality now shows that (3.66) convergesto zero as L
® ¥,uniformly inm.

Thusthe right side of (3.54) can be made arbitrarily small by first choosing L and
then m sufficiently large. Equation (3.44) is now established. This completes the proof of

part a.

b) Suppose Pisdifferentiable at h Thenfor any sl Uy,

e _ . 1
ah YL I Qg [oH,, (9] 1, (609

= lim—- OXC L, Im, (dxls) (3.68)

k®||

Let mbe atrandation invariant, tempered Gibbs state. From the L ebesgue Dominated

Convergence Theorem and Lemma 3.1,
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daP . b .
o = OO G L m, (e fds)

= lim— §Ix C L, ndx)

T
=b Qlx C QI n(dx) (3.69)
The rest of the proof of b) follows asin part a) with the cylinder function [xg|

playing the role of g(x) and h playing the role of b.

Remark 3.3 Theorem 3.1 may be extended to deal with Gibbs states invariant under groups
which preserve the algebra of measurable cylinder sets, other than the trandation group on
R For example, let G be agroup of Euclidean motions on Rd containing a subgroup of

the trandation group. Assuming that Gibbs states invariant under G exist for each b and h,

the proof of Theorem 3.1 may be modified to show that the pressureis differentiable with
respect to b (resp. h) if and only if al Gibbs states invariant under G yield the same
expected specific energy (resp. density of particles). Theorem 3.1 may be easily extended to
lattice systems and groups preserving the lattice and the algebra of measurable cylinder sets.
For G = Zd thelattice version of Theorem 3.1 is an easy consequence of Ref. 6 (see also

Refs.7, 3).

The following corollary is now immediate.
Corollary 3.2 Suppose the Gibbs state for H, bg, hg isunique. Then the pressure p(b,h) is

continuoudly differentiable with respect to b and with respect to h at (bg, hp).

Corollary 3.3 below follows from the proof of Theorem 3.1.
Corollary 3.3 Let npy, be atrandation invariant, tempered Gibbs state for H, by, hand

suppose b,® bg > 0. Then the sequence { my} has a subsequence whose limit on any
cylinder set F is m(F), where mis atrandation invariant, tempered Gibbs state for H, by, h.

An analogous statement holds when hy, ® h, and b isfixed.
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