Problem of the Week 8, Spring 2006

Solution by George Craciun. An analytic solution looks easy. Let ABCD be a rectangle with A(0, a), B(a, c), C(c, 0), D(0, 0). The equation of \overrightarrow{DB} is y = (c/a)x. The equation of \overrightarrow{AP} is y = c - (a/c)x (since \overrightarrow{DB} and \overrightarrow{AP} are perpendicular). Hence the coordinates of P are $x = ac^2/(a^2 + c^2)$ and $y = c^3/(a^2 + c^2)$. Then

$$PE = \frac{c^3}{a^2 + c^2}$$
 and $PF = a - \frac{ac^2}{a^2 + c^2}$.

The relation becomes

$$\left[\frac{c^3}{(a^2+c^2)^{3/2}}\right]^{2/3} + \left[\frac{a^3+ac^2-ac^2}{(a^2+c^2)^{3/2}}\right]^{2/3} = \frac{c^2+a^2}{a^2+c^2} = 1.$$