Problem of the Week 9, Spring 2006

Solution by the organizers (Based on Euler’s original proof 1738) . We
will prove that the only rational solutions to the equation m? —n® = 1 are (m,n) =
(—1,0),(1,0),(0,-1),(3,2),(—=3,2). If n = 0 then m = +£1 are all possible solutions,
similarly if m = 0 then n = —1 is the only solution. Suppose n,m # 0 and n = a/b
with a,b € Z, b > 0, and ged(a,b) = 1. Then

m2b* = a3b + b, (1)

that is b (a® + %) = b(a + b) (a® — ab + b?) is a non-zero square. Let ¢ = a + b, then
equation (1) becomes
m*b* = be (36° — 3be + ) . (2)

If ¢ = 3b then a = 2b and n = 2 which gives the solutions m = +3. From now on
assume ¢ # 3b. Notice that ged(b,c) = ged(b,a + b) = ged(b,a) = 1 and ged(3b* —
3bc + ¢?,b) = ged(c?,b) = 1. Assume that the pair (b, ¢) satisfies that |b] is as small
as possible such that the right-hand side of (2) is a square. We will show that, once
¢ = 3b is excluded, there are no other solutions by the method of infinite descent.
That is we will find a new pair (0, ') with || < b. To do this we first divide in two
cases.

Case 1 3 does not divide c.

Then ged(3b* — 3bc + ¢2,¢) = ged(3b?,¢) = ged(b?,¢) = 1. Thus in equation
(2) we have the product of three integers pairwise coprime which equals a square.
Additionally b > 0 and 3b*> — 3bc + ¢ > 3(b — ¢/2)*> > 0. Thus each of b, ¢, and
3b?—3bc+c? are squares. Then there are positive integers p and ¢ such that ged(p, ¢) =
1 and

2
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Now we divide in two subcases.

Casel.l. 3 does not divide p.

Suppose P is a prime common divisor of 3¢> — 2pq and 3¢*> — p?. Then either
P|q or P|(3q — 2p). If P|q then P|p* which is a contradiction since ged(p,q) = 1.
Thus P|(3¢ — 2p) on the other hand P|(3¢® — 2pq) — (3¢*> — p?) = p* — 2pq. Thus
either Plp or P|(p — 2q). If P|p then P|3¢* but P # 3 (since 3 does not divide p),
so P|g* which is a contradiction. Therefore we must have that P|(p — 2¢). Thus
P| (3¢ —2p) + 2 (p —2q) = —q which is a case we considered before. Therefore our
conclusion is that ged(3¢? — 2pq, 3¢* — p?) = 1.
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This implies that b = 3¢? —2pq and ¢ = 3¢®> —p? or b = 2pg —3¢* and ¢ = p*® — 3¢
However since c is a square we must have ¢ = 0,1 (mod 4) and 3¢*> — p? = 3,2 (mod 4)
since we cannot have both p and ¢ even. Therefore the first option is discarded and
we have that

b=2pq — 3¢ and ¢ = p* — 3¢%.
Now recall that ¢ is a square, so there are positive integers 7, s with ged(r, s) = 1 such
that

o2
P’ =3¢ = (p - gq)
2pqr  1r3¢?
s s
This implies that
P r? 4 3s2
qg  2rs
and
b 2p 5 352 — 3rs +1r?
@ q rs ’
which means that
r2s2b

7 =7s (382 —3rs + T2)
and the left-hand side of the equation is a square since b is a square, thus we obtained
an equation of the same form as (2) but 0 < s < b which we will check later.
Casel.2. 3 divides p.
Let p = 3P then equation (3) becomes

b_q2—2Pq

c  q>—3P%

By an argument similar to the previous case we can check that ged(¢? — 2Pq, ¢* —
3P?%) = 1. And again similarly to last case 3P? — ¢* cannot be a square because it
fails modulo 4. Therefore we must have

> —3P? =cand ¢* —2Pg =b.
But c is a square, so there are positive integers r, s such that
2
¢ — 3P = (q - fP)
s

, 2qrP  r?P?
s s

= g

This implies that
2P 4sr

q :332+r2



and

b 2P 35 —dsr+1?  (3s—r)(s—r)
2 qg 3242 3524172
Then
b(3s2 +12)?
e
Note that the left hand side is a square since b is a square, and if we let £ = s —r and
u = 3s — r then the right hand side becomes

= (332 —i—r2) (B3s—r)(s—r).

tu (3t* — 3ut + u?).
Similarly to last case we also have that 0 <t < b (To be checked later).
Case 2 3 diwvides c.

Let ¢ = 3C. Then gcd(3C,b) =1 and equation (2) becomes

m2bt
9

Moreover ged(b? — 3bC' + 3C?,b) = ged(3C?,b) = ged(C?,b) = 1, and ged(b? — 3bC' +
3C% C) = ged(bv?,C) = 1. Thus b, C, and b*> — 3bC + 3C? are all squares and then we
can apply Case 1 from here.

In each of the three cases we obtain an expression like the right hand side of
equation (2) which is equal to a square, however in each case we contradict the
minimality of the solution. Therefore there are no other solutions.

Now we go over the technical aspects of proving that 0 < s < b in Case 1.1 and
0 <t<bin Case 1.2.

— bC (b — 36C + 3C?)..

Claim 3 In Case 1.1 we have that 0 < s < b.

Proof. First note that b = q(2p — 3q) so we have that 0 < ¢ < b. Also we know
that q/p = 2rs/ (r® + 3s%). Now note that ged (s,7% + 3s%) = ged (s,7?) = 1 and
ged (r, 7% + 3s%) = ged (1, 35%) = ged (r, 3). Therefore 2rs and 12+ 3s? have a greatest
common factor of 1,2,3 or 6. So if 3 1 r then the greatest common factor is 2,
thus ¢ = rs or ¢ = 2rs and consequently s < q. On the other hand if 3|r then the
greatest common factor is 3 or 6. Thus ¢ = rs/3 or 2rs/3 and consequently rs/3 < q.
However 3 < r, thus s < q. In any case we conclude that 0 < s < q < b.

FEquality occurs if b = q which implies that 2p — 3¢ = 1 and then

de = 4(p*—3¢%) = (2p)* — 12¢*
= (143¢)° —12¢° =1+ 6q — 3¢
= 1+6b—3b°.
But ¢ is a square, thus 6b—3b*+1=3b(2 —b)+1 > 0. Butifb > 2 then 3b(2 —b) <

—6. Also if b= 2 then 1 = 2p — 3b = 2p — 6 which is impossible by parity; and finally
if b=1 then ¢ = 1 which gives a = 0 that was excluded to begin with. M



Claim 4 In Case 1.2 we have that 0 < |t| < b.

Proof. Similarly to last case b = ¢ (¢ — 2P), 500 < q < b. Also P/q = 2sr/ (3s* + r?)
and again ged (2sr, 352 4 1?) is either 1,2,3, or 6. In all cases we can deduce that
q > (3s* +1%) /6. We have that s = (u —t)/2 and r = (u — 3t) /2 thus

q > é(B(u;t>2+(u;3t)2> (4)
> i(u2—4ut—l—5t2)
> i«u—%f+ﬁy

If [t| > 4 then t* > 4|t| and consequently ¢ > |t| > 0. If |¢| = 3 and (u — 2t) # 0 then
(u —2t)% +¢* > 10 and then ¢ > 3 = [¢|. Otherwise u — 2t = 0 and s = 3t/2 which
is not an integer. If |t| = 2 and |u — 2t| > 2 then (u — 2t)* + t> > 8 and thus ¢ > |¢|.
The other possibilities are as follows, if uw — 2t = 0 then r = —¢/2 and s = 3t/2 which
is impossible since both must be positive. If u — 2t = £1 then s = (¢ £ 1) /2 which
is not an integer. If |t| = 1 then since ¢ is an integer we must have ¢ > 1 = [t].
Finally, if £ = 0 then s = r = /2 which implies that P = 1,q = 2, and b = 0 which
is impossible.

In all possibilities we obtain ¢ > |t| > 0, with equality if b = ¢ which implies that
b—2P =q—2P =1 and then

b—1)°
c = q2—3P2:b2—3(T)

(b+3)*—12

But ¢ is a square, say ¢ = C2, then the last equation becomes 12 = (b + 3)* — (2C)* =

(b+3+2C)(b+ 3 —2C), and since both factors must be even in order for b to be
integer we must have b + 3 4+ 2C =6 and b+ 3 — 2C = 2 which gives b = C =1 and
then a = ¢ — b= C? — b = 0 which was excluded. Thus equality never happens. =



