
Problem of the Week 9, Spring 2006

Solution by the organizers (Based on Euler’s original proof 1738) . We
will prove that the only rational solutions to the equation m2 − n3 = 1 are (m,n) =
(−1, 0), (1, 0), (0,−1), (3, 2), (−3, 2). If n = 0 then m = ±1 are all possible solutions,
similarly if m = 0 then n = −1 is the only solution. Suppose n,m 6= 0 and n = a/b
with a, b ∈ Z, b > 0, and gcd(a, b) = 1. Then

m2b4 = a3b+ b4, (1)

that is b (a3 + b3) = b (a+ b) (a2 − ab+ b2) is a non-zero square. Let c = a+ b, then
equation (1) becomes

m2b4 = bc
¡
3b2 − 3bc+ c2

¢
. (2)

If c = 3b then a = 2b and n = 2 which gives the solutions m = ±3. From now on
assume c 6= 3b. Notice that gcd(b, c) = gcd(b, a + b) = gcd(b, a) = 1 and gcd(3b2 −
3bc + c2, b) = gcd(c2, b) = 1. Assume that the pair (b, c) satisfies that |b| is as small
as possible such that the right-hand side of (2) is a square. We will show that, once
c = 3b is excluded, there are no other solutions by the method of infinite descent.
That is we will find a new pair (b0, c0) with |b0| < b. To do this we first divide in two
cases.

Case 1 3 does not divide c.

Then gcd(3b2 − 3bc + c2, c) = gcd(3b2, c) = gcd(b2, c) = 1. Thus in equation
(2) we have the product of three integers pairwise coprime which equals a square.
Additionally b > 0 and 3b2 − 3bc + c2 ≥ 3(b − c/2)2 ≥ 0. Thus each of b, c, and
3b2−3bc+c2 are squares. Then there are positive integers p and q such that gcd(p, q) =
1 and

3b2 − 3bc+ c2 =

µ
b
p

q
− c

¶2
=

b2p2

q2
− 2bpq

q
+ c2.

Thus
b

c
=
3q2 − 2pq
3q2 − p2

. (3)

Now we divide in two subcases.
Case1.1. 3 does not divide p.
Suppose P is a prime common divisor of 3q2 − 2pq and 3q2 − p2. Then either

P |q or P |(3q − 2p). If P |q then P |p2 which is a contradiction since gcd(p, q) = 1.
Thus P |(3q − 2p) on the other hand P | (3q2 − 2pq) − (3q2 − p2) = p2 − 2pq. Thus
either P |p or P |(p − 2q). If P |p then P |3q2 but P 6= 3 (since 3 does not divide p),
so P |q2 which is a contradiction. Therefore we must have that P |(p − 2q). Thus
P | (3q − 2p) + 2 (p− 2q) = −q which is a case we considered before. Therefore our
conclusion is that gcd(3q2 − 2pq, 3q2 − p2) = 1.
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This implies that b = 3q2−2pq and c = 3q2−p2 or b = 2pq−3q2 and c = p2−3q2.
However since c is a square we must have c ≡ 0, 1 (mod 4) and 3q2−p2 ≡ 3, 2 (mod 4)
since we cannot have both p and q even. Therefore the first option is discarded and
we have that

b = 2pq − 3q2 and c = p2 − 3q2.
Now recall that c is a square, so there are positive integers r, s with gcd(r, s) = 1 such
that

p2 − 3q2 =
³
p− r

s
q
´2

= p2 − 2pqr
s
+

r2q2

s2
.

This implies that
p

q
=

r2 + 3s2

2rs

and
b

q2
=
2p

q
− 3 = 3s2 − 3rs+ r2

rs
,

which means that
r2s2b

q2
= rs

¡
3s2 − 3rs+ r2

¢
and the left-hand side of the equation is a square since b is a square, thus we obtained
an equation of the same form as (2) but 0 < s < b which we will check later.
Case1.2. 3 divides p.
Let p = 3P then equation (3) becomes

b

c
=

q2 − 2Pq
q2 − 3P 2

.

By an argument similar to the previous case we can check that gcd(q2 − 2Pq, q2 −
3P 2) = 1. And again similarly to last case 3P 2 − q2 cannot be a square because it
fails modulo 4. Therefore we must have

q2 − 3P 2 = c and q2 − 2Pq = b.

But c is a square, so there are positive integers r, s such that

q2 − 3P 2 =
³
q − r

s
P
´2

= q2 − 2qrP
s

+
r2P 2

s2
.

This implies that
2P

q
=

4sr

3s2 + r2
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and
b

q2
= 1− 2P

q
=
3s2 − 4sr + r2

3s2 + r2
=
(3s− r) (s− r)

3s2 + r2
.

Then
b (3s2 + r2)

2

q2
=
¡
3s2 + r2

¢
(3s− r) (s− r) .

Note that the left hand side is a square since b is a square, and if we let t = s− r and
u = 3s− r then the right hand side becomes

tu
¡
3t2 − 3ut+ u2

¢
.

Similarly to last case we also have that 0 < t < b (To be checked later).

Case 2 3 divides c.

Let c = 3C. Then gcd(3C, b) = 1 and equation (2) becomes

m2b4

9
= bC

¡
b2 − 3bC + 3C2

¢
.

Moreover gcd(b2− 3bC +3C2, b) = gcd(3C2, b) = gcd(C2, b) = 1, and gcd(b2− 3bC +
3C2, C) = gcd(b2, C) = 1. Thus b, C, and b2− 3bC +3C2 are all squares and then we
can apply Case 1 from here.
In each of the three cases we obtain an expression like the right hand side of

equation (2) which is equal to a square, however in each case we contradict the
minimality of the solution. Therefore there are no other solutions.
Now we go over the technical aspects of proving that 0 < s < b in Case 1.1 and

0 < t < b in Case 1.2.

Claim 3 In Case 1.1 we have that 0 < s < b.
Proof. First note that b = q (2p− 3q) so we have that 0 < q ≤ b. Also we know
that q/p = 2rs/ (r2 + 3s2). Now note that gcd (s, r2 + 3s2) = gcd (s, r2) = 1 and
gcd (r, r2 + 3s2) = gcd (r, 3s2) = gcd (r, 3). Therefore 2rs and r2+3s2 have a greatest
common factor of 1, 2, 3 or 6. So if 3 - r then the greatest common factor is 2,
thus q = rs or q = 2rs and consequently s ≤ q. On the other hand if 3|r then the
greatest common factor is 3 or 6. Thus q = rs/3 or 2rs/3 and consequently rs/3 ≤ q.
However 3 ≤ r, thus s ≤ q. In any case we conclude that 0 < s ≤ q ≤ b.
Equality occurs if b = q which implies that 2p− 3q = 1 and then

4c = 4
¡
p2 − 3q2¢ = (2p)2 − 12q2

= (1 + 3q)2 − 12q2 = 1 + 6q − 3q2
= 1 + 6b− 3b2.

But c is a square, thus 6b−3b2+1 = 3b (2− b)+1 > 0. But if b > 2 then 3b (2− b) <
−6. Also if b = 2 then 1 = 2p− 3b = 2p− 6 which is impossible by parity; and finally
if b = 1 then c = 1 which gives a = 0 that was excluded to begin with.
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Claim 4 In Case 1.2 we have that 0 < |t| < b.

Proof. Similarly to last case b = q (q − 2P ), so 0 < q ≤ b. Also P/q = 2sr/ (3s2 + r2)
and again gcd (2sr, 3s2 + r2) is either 1, 2, 3, or 6. In all cases we can deduce that
q ≥ (3s2 + r2)/6. We have that s = (u− t)/2 and r = (u− 3t) /2 thus

q ≥ 1

6

Ã
3

µ
u− t

2

¶2
+

µ
u− 3t
2

¶2!
(4)

≥ 1

4

¡
u2 − 4ut+ 5t2¢

≥ 1

4

¡
(u− 2t)2 + t2

¢
.

If |t| ≥ 4 then t2 ≥ 4 |t| and consequently q ≥ |t| > 0. If |t| = 3 and (u− 2t) 6= 0 then
(u− 2t)2 + t2 ≥ 10 and then q ≥ 3 = |t|. Otherwise u− 2t = 0 and s = 3t/2 which
is not an integer. If |t| = 2 and |u− 2t| ≥ 2 then (u− 2t)2 + t2 ≥ 8 and thus q ≥ |t|.
The other possibilities are as follows, if u− 2t = 0 then r = −t/2 and s = 3t/2 which
is impossible since both must be positive. If u − 2t = ±1 then s = (t± 1) /2 which
is not an integer. If |t| = 1 then since q is an integer we must have q ≥ 1 = |t|.
Finally, if t = 0 then s = r = u/2 which implies that P = 1, q = 2, and b = 0 which
is impossible.
In all possibilities we obtain q ≥ |t| > 0, with equality if b = q which implies that

b− 2P = q − 2P = 1 and then

c = q2 − 3P 2 = b2 − 3
µ
b− 1
2

¶2
=

(b+ 3)2 − 12
4

.

But c is a square, say c = C2, then the last equation becomes 12 = (b+ 3)2−(2C)2 =
(b+ 3 + 2C) (b+ 3− 2C), and since both factors must be even in order for b to be
integer we must have b+ 3 + 2C = 6 and b+ 3− 2C = 2 which gives b = C = 1 and
then a = c− b = C2 − b = 0 which was excluded. Thus equality never happens.
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