
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Solution by Boian Djonov (edited). Solving for k we obtain 
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Since we want k, a, and b to be positive integers, then 
ba +

2005 also has to be an integer. 

So, a + b has to equal to a positive factor of 2005 (2005 = 401*5) which are 1, 5, 401, 
and 2005. 
 
Case 1: a + b = 1. Here  a and b can not be both positive integers. 
 
Case 2: a + b = 5. Then, k . In this case k is negative for values of a 
and b such that a + b = 5. 
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Case 3: a + b = 401. Then, 
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Since we want k to have minimum value, we set the derivative of the above expression 
equal to 0: . Since a is an integer then the maximum is 
achieved when or . Then . 
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Case 4: a + b = 2005 
Similarly to Case 3, I evaluated that the minimum value for k in that case is k = 1005006. 
 
So, from the three cases it follows that the minimum positive integer value that k can 
have is: k = 40196, when a = 201, b = 200. 

Proposed by Bernardo Ábrego and Silvia Fernández. February 21-28

Find the smallest positive integer k for which the equation
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has a solution with a and b positive integers. Justify your answer.
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