Problem of the Week. April 26-May 3

Proposed by Bernardo Ábrego and Silvia Fernández.

Prove that if nine points are chosen in the interior of a unit square, then three of them form a triangle with area at most 1/8. (Note: If three points are on the same line, we say that the triangle they form has area zero).

Solution by Takumi Saegusa. Let $ABCD$ be a unit square, L, M, N, O be the middle points of the edges AB, BC, CD , and DA , respectively, and P be the intersection of the line AC and BD. Consider partitioning ABCD into 4 squares ALPO, BMPL, CNPM, DOPN. The pigeonhole principle shows that at least one of the four squares contains three points since the number of squares is 4 and the number of points is 9. If the point is on the boundary line of squares, I count the point in the one square which consists of the boundary, which doesn't affect my argument.

Without loss of generality, the square $ALPO$ contains three points, say, a_1, a_2 , and a_3 . If these three points are on the same line, I have nothing to prove. Consider the other case. I claim that there exists a triangle QRS containing the triangle $a_1a_2a_3$ where the points Q, R, S are on some edges of the square $ALPO$. Let Q and R be the intersections of edges of the square $ALPO$ and the line ℓ through a_1 and a_2 . Let S be the intersection of the edge of the square ALPO and the line which is perpendicular to the line ℓ , passes through a_3 , and such that a_3 is between S and ℓ . Then the triangle *QRS* satisfies my claim.

Now, I show that the area of the triangle QRS is at most 1/8. If two of the three points Q, R, S are on the same edge, the triangle has area of at most $1/8$, since the base formed by these two points on the same edge has length at most $1/2$, and the height is at most $1/2$. Now, consider the three points Q, R, S are on the different edges. Without loss of generality, suppose Q is on AL, R is on LP, and S is on OP. Let s, t, and u be the length of the segments AQ , LR, and PS respectively. We have $0 \leq s, t, u \leq 1/2$. Then

area of
$$
QRS
$$
 = (area of $ALPO$) - (area of QLR) - (area of PRS) - (area of $AGSO$)
\n= $\left(\frac{1}{2}\right)^2 - \frac{1}{2}\left(\frac{1}{2} - s\right)t - \frac{1}{2}\left(\frac{1}{2} - t\right)u - \frac{1}{2}\left(s + \left(\frac{1}{2} - u\right)\right)\left(\frac{1}{2}\right)$
\n= $\frac{1}{4} - \frac{t}{4} + \frac{st}{2} - \frac{u}{4} + \frac{tu}{2} - \frac{s}{4} - \frac{1}{8} + \frac{u}{4}$
\n= $\frac{1}{8} - \left(\frac{1}{2} - u\right)\frac{t}{2} - \left(\frac{1}{2} - t\right)\frac{s}{2} \le \frac{1}{8}$

since two terms dropped are nonpositive. This completes the proof.