The expected area of the triangle can be found by first determining the expected area *outside* of the triangle and then subtracting it from the area of the circle. That is, $E(\Delta) = \pi - 3E(A)$, where **A** is the area of any circular segment **C** contained between a side of the triangle and the circle:

We can assume that the three randomly selected points P_1, P_2, P_3 are distinct, as this is a probability 1 event. Let $\theta \in (0, \pi]$ be the (smaller) central angle between any two points, say P_1 and P_2 , as shown above.

If P_3 falls within the *longer* arc between P_1 and P_2 , as shown, then

A = area of the sector **OP**₁**P**₂ – area of the triangle **OP**₁**P**₂ =
$$S(\theta) = \frac{\theta}{2} - \frac{\sin \theta}{2}$$

This case occurs with probability $1 - \frac{\theta}{2\pi}$, since the shorter arc length between **P**₁ and **P**₂ is θ .

For the case when P_3 is within the *shorter* arc between P_1 and P_2 , which occurs with probability $\frac{\theta}{2\pi}$, the area A will be that of the complement of the region C shown above, or $\pi - S(\theta)$.

As the probability density of θ is $f(\theta) = \frac{1}{\pi}$, we have

$$\mathbf{E}(\mathbf{A}) = \int_0^{\pi} \left[\left(1 - \frac{\theta}{2\pi} \right) S(\theta) + \frac{\theta}{2\pi} (\pi - S(\theta)) \right] \frac{1}{\theta} d\theta$$

$$= \int_0^{\pi} \left[\frac{\theta \sin \theta}{2\pi} - \frac{1}{2} \sin \theta - \frac{\theta^2}{2\pi} + \theta \right] d\theta = \frac{\pi^2}{3} - \frac{1}{2}.$$

We thus obtain $E(\Delta) = \pi - 3E(A) = \frac{3}{2\pi}$. The expected area of a random triangle is thus only about 15% of the area of the circle.