
Problem of the Week 5, Fall 2008

Real numbers a, b, and c satisfy that
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Prove that, for every odd integer n, the following identity holdsµ
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Solution by organizers. Given
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we have

(a+ b+ c) (bc+ ac+ ab) = abc,

2abc+ a2c+ a2b+ b2c+ ab2 + ac2 + bc2 = 0,

(a+ b) (b+ c) (a+ c) = 0.

This means that either b = −a, c = −a, or c = −b. Since a, b, and c play the same role in the

identities above, we can assume c = −b. Thus, for every odd integer n, cn = −bn, 1
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