

Proposed by Bernardo Ábrego and Silvia Fernández.

November 8-15

The positive integers p, p_1, p_2 , and p_3 are prime numbers satisfying that $p_1 < p_2 < p_3$, and

$$p = p_1^2 + p_2^2 + p_3^2.$$

Prove that $p_1 = 3$.

Solution by. Chuck Goodman

First, we note that P_i may not be 2.

Since all the other primes are odd, we would have

something in the form of $2^2 + (2n+1)^2 + (2m+1)^2$ for

some $m,n \in \mathbb{Z}$. This will always be even and P must be odd.

Next, we note that since all the primes on the right hand side are at least 3, P itself must be greater than 3.

So we can say if $P_1 \neq 3$, then none of P_1, P_2 , or P_3 is divisible by 3 since $P_1 < P_2 < P$.

Now, if we work mod 6, we see that each $P_i \equiv \pm 1 (Mod6)$

[Since] We know that P would be congruent to 2 or 4 iff it was divisible

by 2 and it would be congruent to 3 iff it was divisible by 3.

$$P_i \equiv \pm 1(Mod6) \Longrightarrow P_i^2 \equiv 1(Mod6)$$

Next, we know that if $P_i^2 \equiv 1 \pmod{6}$, then $\sum_{i=1}^{3} P_i^2 \equiv 3 \pmod{6}$

But, this contradicts that fact the P is a prime greater than 3 since P must be divisible by 3!

We conclude the P_i must include 3

and since we have $P_1 < P_2 < P_3$, we must have $P_1 = 3$