

problem of the Week

Proposed by Miroslav Tanushev.

November 1-8

Let ABC be an isosceles triangle with BC = CA and $\angle BCA = 20^{\circ}$. Points D and E are on the sides BC and CA, respectively, and they satisfy that $\angle DAB = 50^{\circ}$ and $\angle ABE = 60^{\circ}$. Find, with proof, the exact value of the angle $\angle DEB$.

Solution by: Yuko Takagi

^{*} This figure may not be accurate.

Objectives: To prove \triangle CAD and \triangle BED are similar triangles by comparing the ratio of the lengths of the sides, and find out the value of the angle \angle DEB.

[Step 1]

From the given information, the followings are determined.

$$\angle$$
ADB = 50°

$$\angle CBE = 20^{\circ}$$

$$\angle DAC = 30^{\circ}$$

[Step 2]

Let the lengths of CA and CB = 1.

Let the lengths of AB = a.

From the given information and Step 1, Δ BAD is an isosceles triangle.

Therefore, the length of DB = a.

[Step 3]

Let the length of CE equal to x.

Since \triangle CEB is an isosceles triangle(see Step 1), the length of BE = x.

Now, I describe x in terms of a.

[Step 4]

Draw a perpendicular line from C to the line AB. Label it F.

Draw a perpendicular line from E to the line AB. Label it G.

$$FG: GA = CE: EA = x: 1-x \rightarrow (1)$$

[Step 5]

Since Δ ABC is an isosceles triangle, F equally divides the line AB.

 Δ BEG is a half of a equilateral triangle, therefore the length of BG is half of the length of BE.

FG : GA = BG-BF : AB-BG =
$$x/2 - a/2 : a - x/2$$
 \rightarrow (2)

(1) and (2) are the same ratio. Now solve this for x.

$$x : 1-x = x/2 - a/2 : a - x/2$$

 $x = a/(1-a) \rightarrow (3)$

[Step 6]

With those being solved, the ratio of BE: BD will be

BE : BD =
$$a/(1-a)$$
 : $a = 1$: 1- $a \rightarrow (4)$

which is the same as CA: CD.

Since the ratio of lengths of two sides are the same and the angles between the sides are the same as well, ΔCAD and ΔBED are similar triangles.

Therefore,
$$\angle DEB = \angle DAC = 30^{\circ}$$
 $\underline{\angle DEB = 30^{\circ}}$