

Proposed by Miroslav Tanushev.

November 1-8

Let ABC be an isosceles triangle with BC = CA and $\angle BCA = 20^{\circ}$. Points D and E are on the sides BC and CA, respectively, and they satisfy that $\angle DAB = 50^{\circ}$ and $\angle ABE = 60^{\circ}$. Find, with proof, the exact value of the angle $\angle DEB$.

Solution by: Jeffrey Liu

We know $\angle BCA = 20^{\circ}$ and AC = BC, $\angle DAB = 50^{\circ}$ and $\angle ABE = 60^{\circ}$. From above we know $\angle DAE = 30^{\circ}$ ((180° -20°)/2-50° =30°), $\angle AFB = 70^{\circ}$ (180° -50° -60° = 70°) = $\angle EFD$, $\angle EBD = 20^{\circ}$ ((180° -20°)/2-60° = 20°), $\angle ADB = 50^{\circ}$ (70° -20° = 50°), and $\angle AEB = 40^{\circ}$ (180° -60° -50° -30° = 40°).

From $\angle BDA = 50^{\circ} = \angle BAD$, we know BD = AB.

Find a point H, make \angle HBA = 20°, draw line HB and HD. \angle BHA = \angle BAH = 80° (180° -20° -80° =80°), so that AB = BH. \angle ABE = 40° (60° -20° = 40°), \angle DBH = 60° (40° +20° = 60°). Triangle DHB is an equilateral triangle, DH=HB=BD=BA. And \angle HEB = 40° = \angle HBE, so DH=HB=BD=BA=EH

We know the EH=DH=BH, that mean point E, D and B are on the same circle, which point H is the center. We can say \angle DHB = 2 \angle DEB, that mean \angle DEB = 60° /2 = 30°.

 $\angle \text{DEB} = 30^{\circ}$.