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Abstract Recently, there has been a resurgence of intense experimental and theoretical
interest on the Kondo physics of nanoscopic and mesoscopic systems due to the
possibility of making experiments in extremely small samples. We have carried
out exact diagonalization calculations to study the effect of energy spacing ∆
in the conduction band states, hybridization, number of electrons, and disorder
on the ground-state and thermal properties of strongly-correlated electron nan-
oclusters. For the ordered systems, the calculations reveal for the first time that
∆ tunes the interplay between the local Kondo and non local RKKY interac-
tions, giving rise to a “Doniach phase diagram" for the nanocluster with regions
of prevailing Kondo or RKKY correlations. The interplay of ∆ and disorder
gives rise to a ∆ versus concentration T = 0 phase diagram very rich in struc-
ture. The parity of the total number of electrons alters the competition between
the Kondo and RKKY correlations. The local Kondo temperatures, TK , and
RKKY interactions depend strongly on the local environment and are overall
enhanced by disorder, in contrast to the hypothesis of “Kondo disorder” single-
impurity models. This interplay may be relevant to experimental realizations of
small rings or quantum dots with tunable magnetic properties.
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1. INTRODUCTION

Magnetic impurities in non-magnetic hosts have been one of the central sub-
jects in the physics of strongly correlated systems for the past four decades[1].
Such enduring, ongoing research effort is motivated by a constant shift and in-
crease of scientific interest over the years, from dilute [2] to concentrated impu-
rities [3], from periodic [4] to disordered samples [5, 6], and from macroscopic
[7] to nanoscale phenomena [8]. Macroscopic strongly correlated electron sys-
tems at low temperatures and as a function of magnetic field, pressure, or alloy-
ing show a wide range of interesting phenomena, such as non-Fermi-liquid be-
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havior, antiferromagnetism, ferromagnetism, enhanced paramagnetism, Kondo
insulators, quantum criticality or superconductivity[1, 7]. These phenomena
are believed to arise through the interplay of the Kondo effect, the electronic
structure and intersite correlations. In the simplest single-impurity case, the
Kondo problem describes the antiferromagnetic interaction, J , between the
impurity spin and the free electron spins giving rise to an anomalous scattering
at the Fermi energy, leading to a large impurity contribution to the resistivity
[1]. The low-energy transport and the thermodynamic properties scale with a
single characteristic energy, the Kondo temperature, TK ∝ exp(−1/ρ(EF )J),
where ρ(EF ) is the density of states of the conduction electrons at the Fermi
energy [1]. At T >> TK , the impurity spin is essentially free and the prob-
lem can be treated perturbatively. At T << TK , the impurity spin is screened
forming a singlet complex with the conduction electrons, giving rise to a local
Fermi liquid state.

For dense Kondo or heavy fermion compounds containing a periodic array
of magnetic ions interacting with the sea of conduction electrons, the physics
is determined from the competition between the non local Ruderman-Kittel-
Kasuya-Yosida (RKKY) interactions and the local Kondo interactions[9]. The
RKKY interaction is an indirect magnetic interaction between localized mo-
ments mediated by the polarized conduction electrons, with an energy scale
of order JRKKY ∝ J2ρ(EF ), which promotes long- or short-range magnetic
ordering. On the other hand, the Kondo effect favors the formation of sin-
glets resulting in a non-magnetic ground state. In the high temperature regime
the localized moments and the conduction electrons retain their identities and
interact weakly with each other. At low-temperatures, the moments order mag-
netically if the RKKY interaction is much larger than the Kondo energy, while
in the reverse case, the system forms a heavy Fermi liquid of quasiparticles
which are composites of local moment spins bound to the conduction electrons
[7, 9]. Thus, the overall physics can be described by the well-known “Doniach
phase diagram", originally derived for the simple Kondo necklace model[10].
The description of the low-temperature state, when both the RKKY and the
Kondo interactions are of comparable magnitude, is an intriguing question that
remains poorly understood and is the subject of active research[9].

The interplay of disorder and strong correlations has been a subject of inten-
sive and sustained research, in view of the non-Fermi-liquid (NFL) behavior
in the vicinity of a quantum critical point[11]. Various disorder-driven models
have been proposed to explain the experimentally observed[7] NFL behavior
at low temperatures[5–7, 12]. The phenomenological “Kondo disorder” ap-
proaches [5, 13], based on single-impurity models, assume a distribution of
Kondo temperatures caused by a distribution of either f − c orbital hybridiza-
tion or of impurity energy levels. These models rely on the presence of certain
sites with very low TK spins leading to a NFL behavior at low T . An open
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issue in such single-site Kondo approaches, is whether the inclusion of RKKY
interactions would renormalize and eliminate the low-TK spins[4, 14–16]. An
alternative view is the formation of large but finite magnetic clusters (Grif-
fith phases) within the disordered phase through the competition between the
RKKY and Kondo interactions [6, 17].

On the other hand, the possibility of making experiments in extremely small
samples has lead to a resurgence of both experimental and theoretical inter-
est of the physics of the interaction of magnetic impurities in nanoscopic and
mesoscopic non-magnetic metallic systems. A few examples include quantum
dots[18], quantum boxes[19] and quantum corrals[20]. Recent scanning tun-
neling microscope(STM) experiments[21] studied the interaction of magnetic
impurities with the electrons of a single-walled nanotube confined in one di-
mension. Interestingly, in addition to the bulk Kondo resonance new sub peaks
were found in shortened carbon nanotubes, separated by about the average en-
ergy spacing, ∆, in the nanotube. The relevance of small strongly correlated
systems to quantum computation requires understanding how the infinite-size
properties become modified at the nanoscale, due to the finite energy spacing ∆
in the conduction band which depends on the size of the particle [8, 19, 22–24].
For such small systems, controlling TK upon varying ∆ is acquiring increasing
importance since it allows to tune the cluster magnetic behavior and to encode
quantum information. While the effect of ∆ on the single-impurity Anderson
or Kondo model has received considerable theoretical[8, 19, 22–24] and ex-
perimental[21] attention recently, its role on dense impurity clusters remains
an unexplored area thus far. The low-temperature behavior of a nanosized
heavy-electron system was recently studied within the mean-field approxima-
tion[25]. A central question is what is the effect of ∆ on the interplay between
the Kondo effect and the RKKY interaction

In this work we present exact diagonalization calculations for d- or f -electron
nanoclusters to study the effects of energy spacing, parity of number of elec-
trons, and hybridization on the interplay between Kondo and RKKY interac-
tions in both ordered and disordered strongly correlated electron nanoclusters.
While the properties of the system depend on their geometry and size[26], the
present calculations treat exactly the Kondo and RKKY interactions, the disor-
der averages, and they provide a distribution of local TK’s renormalized by the
intersite f-f interactions. Our results show that: i) tuning ∆ and the parity of
the total number of electrons can drive the nanocluster from the Kondo to the
RKKY regime, i.e. a zero- temperature energy spacing versus hybridization
phase diagram; ii) the temperature versus hybridization “Doniach" phase dia-
gram for nanoclusters depends on the energy spacing ; iii) changing the total
number of electrons from even to odd results in an enhancement (suppression)
of the local Kondo (RKKY) spin correlation functions; iv) the ∆ versus alloy
concentration T = 0 phase diagram exhibits regions with prevailing Kondo
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or RKKY correlations alternating with domains of ferromagnetic (FM) order;
and v) the local TK’s and the nearest-neighbor (n.n) RKKY interactions de-
pend strongly on the local environment and are overall enhanced by disorder.
The disorder-induced enhancement of TK in the clusters is in contrast to the
hypothesis of “Kondo disorder” models for extended systems.

The rest of the paper is organized as follows. In Sec. II, we describe the
model for both the periodic and disordered clusters. In Secs. IIIA and IIIB we
present results for the ground-state and thermal properties of the ordered and
disordered nanoclusters, respectively. Section IV contains concluding remarks.

2. METHODOLOGY

The one dimensional Anderson lattice model is

H = −t
∑

iσ

(c†iσci+1σ +H.c) + Ef

∑

iσ

nf
iσ

+U
∑

i

nf
i↑n

f
i↓ + V

∑

iσ

(f †iσciσ +H.c.). (1)

Here, t is the nearest-neighbor hopping matrix element for the conduction elec-
trons, c+i,σ(ci,σ) and f+

i,σ(fi,σ) create (annihilate) Wannier electrons in c- and
f - like orbital on site i with spin σ, respectively; Ef is the energy level of the
bare localized orbital, V is the on-site hybridization matrix element between
the local f orbital and the conduction band and U is the on-site Coulomb repul-
sion of the f electrons. We use a simple nearest-neighbor tight-binding model
for the conduction band dispersion, εk = −2tcosk. We consider the half-filled
(Nel = 2N ) symmetric (Ef = −U

2 ) case, with U = 5(6) for the periodic
(disorder) case. We investigate one-dimensional rings of N = 4 and 6. Most
of the results presented are for the N = 6 case, except for the results for T > 0
where we have used N = 4 sites. The exact diagonalization calculations em-
ploy periodic boundary conditions.

Ordered Clusters

We have investigated the ground-state properties as a function of the hy-
bridization and the energy spacing in the conduction band, ∆ = 4t/(N −1) =
4t
5 . We have calculated the average f− and c−local moments, < (µfi )

2 >≡<
Sf,z
i Sf,z

i > and < (µci )
2 >≡< Sc,z

i Sc,z
i >, respectively. Here, Sf

i and Sc
i are

given by

Sf
i =

1
2

∑

σ,σ′
τσσ′f+

iσfiσ′ (2)
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and

Sc
i =

1
2

∑

σ,σ
′
τσσ′ c+iσciσ′ , (3)

where τ are the Pauli matrices.
We have also calculated the zero-temperature f-f and f-c spin correlation

functions (SCF)< Sf
i S

f
i+1 >≡< g|Sf,z

i Sf,z
i+1|g > and< Sf

i S
c
i >≡< g|Sf,z

i Sc,z
i |g >,

respectively. Here, |g > is the many-body ground state and Sf,z
i is the z-

component of the f-spin at site i. As expected, the cluster has a singlet ground
state (Sg = 0 where Sg is the ground-state spin) at half filling. We compare the
onsite Kondo correlation function < Sf

i S
c
i > and the nearest-neighbor RKKY

correlation function < Sf
i S

f
i+1 > to assign a state to the Kondo or RKKY

regimes, in analogy with mean field treatments[27]. The spin structure factor
related to the equal-time f − f spin correlation functions in the ground state is

Sff (q) =
1
N

∑

i,j

< g|Sf
i · Sf

j |g > eiq(xi−xj). (4)

The temperature-dependent local f-spin susceptibility, χf (T ),is

kBTχ
f (T )

(gµB)2
=

1
Q

∑

α

e
− Eα

kBT < α|Sf (i)STot|α >, (5)

where

Q =
∑

α

e
− Eα

kBT (6)

is the partition function. Here, STot is the z-projection of the total spin (both
the f - and c-contributions), and |α > and Eα are the exact many-body eigen-
states and eigenvalues, respectively. When V = 0, the localized spins and
conduction electrons are decoupled and χf (T ) is simply the sum of the Curie
term due to the free f spins and the Pauli term of the free conduction elec-
trons. For finite V , χf (T ) decreases with temperature at low-temperatures.
The specific heat is calculated from the second derivative of the free energy F ,
Cv = −T ∂2F

∂T 2 . At V = 0, the specific heat of the system is given by the sum of
the delta function at T = 0 that originates from the free localized spins and the
specific heat of free conduction electrons. For finite V the specific heat exhibits
a double-peak structure: the high-temperature peak is almost independent of
the hybridization and arises from the free conduction electron contribution,
whereas the low-temperature peak varies strongly with hybridization.
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Disordered Clusters

We consider a random binary alloy cluster, AN−xBx, of N=6 sites and dif-
ferent number of B atoms, x = 0-N, arranged in a ring described by the half-
filled (Nel = 2N = 12) two-band lattice Anderson Hamiltonian in Eq.(1). We
introduce binary disorder in the f -orbital energy εif (= εAf or εBf ) and in the
intra-atomic Coulomb energy Ui (= UA or UB), to model a Kondo-type A
atom with εAf = −UA/2= -3 (symmetric case) and a mixed-valent (MV) type
B atom with εBf = -2 and UB = 1. For both types of atoms V A = V B = V =
0.25. For t = 1, this choice of parameters leads to a degeneracy between the
doubly-degenerate c-energy levels, εk = −t, and the energy level εBf + UB .
Upon filling the single particle energy levels for any x, N −x (x) electrons fill
the εAf (εBf ) levels, and two electrons the -2t conduction energy level, with the
remaining N − 2 electrons accommodated in the x+4 degenerate states at −t.
This in turn results in strong charge fluctuations.

The temperature-dependent f susceptibility, χfx(T ), at concentration x, is
given by

kBTχ
f
x(T )

(gµB)2
=

1
Q

∑

Cx,αCx

e
−EαCx

kBT < αCx |Sf (i)STot|αCx >, (7)

where Cx denote the configurations at concentration x, |αCx > and ECx are
the configuration-dependent exact many-body eigenstates and eigenvalues, re-
spectively, and Q denotes the partition function.

3. RESULTS AND DISCUSSION

Ordered Clusters

1. Ground State Properties

In Fig. 1 we present the variation of the local Kondo SCF < Sf
i S

c
i >

(squares) and the nearest-neighbor RKKY SCF < Sf
i S

f
i+1 > (circles) as a

function of hybridization for two values of the hopping matrix element t = 0.2
(closed symbols) and t = 1.2 (open symbols), respectively. As expected, for
weak hybridization V the local nearest-neighbor RKKY (Kondo) SCF is large
(small), indicating strong short-range antiferromagnetic coupling between the
f−f local moments, which leads to long range magnetic ordering for extended
systems. As V increases, < Sf

i S
f
i+1 > decreases whereas the < Sf

i S
c
i >

increases (in absolute value) saturating at large values of V. This gives rise to
the condensation of independent local Kondo singlets at low temperatures, i.e.,
a disordered spin liquid phase. For large V the physics are local. Interestingly,
as t or ∆ decreases the f-c spin correlation function is dramatically enhanced
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while the f-f correlation function becomes weaker, indicating a transition from
the RKKY to the Kondo regime.
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Figure 1. Nearest neighbor f-f spin-spin correlations (circles) and on-site f-c spin-spin corre-
lations (squares) as a function of V for two values of the hopping parameter of t = 0.2 (closed
symbols) and t = 1.2 (open symbols), respectively.

In Fig. 2 we present the average local f - (circles) and c- (squares) moments
as a function of hybridization for two values of the hopping matrix element t =
0.2 (closed symbols) and t = 1.2 (open symbols), respectively. In the weak
hybridization limit, the large on-site Coulomb repulsion reduces the double
occupancy of the f level and a well-defined local f moment is formed 〈µ2

f 〉 =
1.0 while 〈µ2

c〉 = 0.5. With increasing V both charge- and spin- f1uctuations
become enhanced and the local f− moment decreases monotonically whereas
the c− local moment exhibits a maximum. In the large V limit both the f−
and c− local moments show similar dependence on V, with < µ2

c >≈< µ2
f >,

indicating that the total local moment µ vanishes. The effect of lowering the
energy spacing ∆ is to decrease (increase) the f− (c−) local moment, thus
tuning the magnetic behavior of the system. Note that the maximum value of
the c− local moment increases as ∆ decreases. This is due to the fact that for
smaller t values the kinetic energy of conduction electrons is lowered, allowing
conduction electrons to be captured by f electrons to screen the local f moment,
thus leading to an enhancement of the local c− moment.
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Figure 2. f - (circles) and c− (squares) local moment versus hybridization for two values of
the hopping parameter of t=0.2 (closed symbols) and t=1.2 (open symbols), respectively.

In Fig. 3 we present the energy spacing versus V zero-temperature phase
diagram of the nanocluster, which illustrates the interplay between Kondo and
RKKY interactions. In the RKKY region < Sf

i S
f
i+1 > is larger than the

< Sf
i S

c
i > and the total local moment is non zero; in the Kondo regime

< Sf
i S

f
i+1 > is smaller than the < Sf

i S
c
i >, the total local moment van-

ishes, and the ground state of the system is composed of independent local
singlets. The solid crossover curve indicates the V = Vc or ∆ = ∆c val-
ues, where the local and non local spin correlation functions are equal, i.e.,
< Sf

i S
f
i+1 >=< Sf

i S
c
i >. The dashed curve denotes the set of points where

the on-site total local moment µ = 0. Thus, in the intermediate regime, which
will be referred to as the free spins regime [11], < Sf

i S
f
i+1 > is smaller than

the < Sf
i S

c
i >, the f moment is partially quenched and µ 	= 0. Interestingly,

we find that the free spins regime becomes narrower as the average level spac-
ing ∆ is reduced. This result may be interpreted as a quantum critical regime
(QCP) for the nanoring due to the finite energy spacing, which eventually re-
duces to a quantum critical point when ∆ → 0.

Fig. 4 shows the spin structure factor of the local f electrons Sff (q) for
various values of V and for t = 0.2. As discussed earlier, the ground state
of the half-filled symmetric periodic Anderson model is a singlet. For small
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Figure 3. Energy spacing ∆ versus hybridization zero-temperature phase diagram. The solid
curve denotes the crossover point of the spin-spin correlation function in Fig.1; the dashed curve
denotes the set of points where the on-site total moment square 〈(µf + µc)

2〉 = 0.0 ± 0.05.

V, the spin structure factor exhibits a maximum at q = π, indicating the pres-
ence of strong antiferromagnetic correlations between the local f moments,
consistent with the large values of < Sf

i S
f
i+1 > in Fig. 1. With increasing hy-

bridization, the maximum of Sff (q = π) decreases and vanishes at very large
hybridization, indicating that the ground state undergoes a transition from the
antiferromagnetic to the nonmagnetic Fermi liquid phase. This is consistent
with the zero-temperature phase diagram in Fig. 3.

The spin gap as a function of hybridization V for two values of energy spac-
ing is shown in Fig. 5. The spin gap is defined as the energy difference between
the singlet ground state and the lowest-lying excited triplet (S = 1) state. As
expected, there is a nonzero spin gap for the half-filled Anderson lattice model,
which increases with hybridization. Interestingly, the spin gap dramatically in-
creases as the average energy level spacing ∆ is reduced. Thus, the energy
spacing or equivalently the size of the cluster tunes the low-energy excitation
energy which controls the low-temperature specific heat and susceptibility.

2. Thermal Properties
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Figure 4. Spin structure factor as a function of wave-vector for different values of V and for
t=0.2.
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Figure 5. Spin gap as a function of V for t = 0.2 and 1.2. The spin gap increases exponen-
tially (linearly) for small (large) V.

The T=0 exact diagonalization results on small clusters are generally plagued
by strong finite size effects[26, 28]. Performing calculations at T > 0 gives
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not only the thermodynamic properties of the system, but most importantly
diminishes finite-size effects for (kBT � ∆).

In Fig. 6, we show the nearest-neighbor f-f spin-spin correlations and on-
site f-c spin-spin correlation as a function of temperature for for t = 0.2 and
for V = 0.2 < Vc and V = 0.4 > Vc, where Vc = 0.25. At high tem-
peratures, the free moments of the f and conduction electrons are essentially
decoupled. The nearest-neighbor non local spin correlation function falls more
rapidly with T than the on-site local f − c spin-spin correlations, indicating
that the non local spin correlations can be destroyed easier by thermal fluctu-
ations. For V < Vc, the nanocluster is dominated by RKKY (Kondo) interac-
tions at temperatures lower (higher) than the crossover temperature, T cl

RKKY ,
which denotes the temperature where the non local and local interaction be-
come equal in the nanocluster. In the infinite system this temperature would
denote the ordering Néel temperature. On the other hand, for V > Vc the
RKKY and Kondo spin correlation functions do not intersect at any T , and the
physics become dominated by the local interactions.
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Figure 6. Nearest-neighbor f-f and on-site f-c spin-spin correlation functions versus temper-
ature for t = 0.2 and for V = 0.2 < Vc and V = 0.4 > Vc, Vc = 0.25.

In Fig. 7 we present the crossover temperature T cl
RKKY for the cluster as a

function of hybridization for different values of t. This represents the phase di-
agram of the strongly correlated nanocluster, which is similar to the “Doniach
phase diagram" for the infinite Kondo necklace model. The phase within the
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crossover curve denotes the regime where the non local short-range magnetic
correlations are dominant. For V < Vc and T >> T cl

RKKY one enters into
the disordered “free" local moment regime. On the other hand, for V > Vc
and at low T , the nanocluster can be viewed as a condensate of singlets, typ-
ical of the Kondo spin-liquid regime. Interestingly, the T cl

RKKY can be tuned
by the energy spacing ∆ or the size of the cluster. Thus, increasing ∆ or de-
creasing the size of the nanocluster results to enhancement of the non local
nearest-neighbor magnetic correlations and hence T cl

RKKY . This result is the
first exact “Doniach phase diagram" for a nanocluster.
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Figure 7. Effect of energy spacing, ∆ = 4t
N−1

on the exact “Doniach phase diagram" for a
strongly correlated electron nanochain. The crossover curve represents the crossover tempera-
ture T cl

RKKY , where the non local short range AF spin correlations become equal to the local
on-site Kondo spin correlations.

In bulk Kondo insulators and heavy-fermion systems, the low-T suscepti-
bility and specific heat behavior is determined by the spin gap, which for the
half-filled Anderson lattice model, is determined by the ratio of V to U . On
the other hand, strongly correlated nanoclusters are inherently associated with
a new low-energy cutoff, namely the energy spacing ∆ of the conduction elec-
trons. Thus, a key question is how can the low-temperature physics be tuned
by the interplay of the spin gap and the energy spacing. In Fig. 8 we present
the local f magnetic susceptibility as a function of temperature for t = 0.2 and
for V = 0.2 < Vc, V = Vc = 0.25, and V = 0.4 > Vc. For small V , the
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spin gap which is smaller than ∆ controls the exponential activation behavior
of χf at low T . On the other hand, in the large V limit, the spin gap becomes
larger than ∆ (see Fig. 5) and the low-T behavior of the susceptibility shows
no exponential activation. At high T we can see an asymptotic Curie-Weiss
regime, typical of localized decoupled moments.
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Figure 8. Local f magnetic susceptibility as a function of temperature for t = 0.2 and with
V = 0.2 < Vc, V = Vc = 0.25 and V = 0.4 > Vc.

In Fig. 9, we present the specific heat as a function of temperature for
V = 0.4 and different t. At V = 0, the specific heat is given by the sum of
a delta function at T = 0 for the localized spins and the specific heat of free
fermions. As expected, by switching on the coupling V , they are combined
to form a two-peak structure. The broad peak at high T is rather similar to
the free-electron gas. The low-T behavior is associated with the lowest energy
scale, which as in the case of the susceptibility, is determined by the lowest
value between the spin gap and the energy spacing ∆. For large values of
t (or ∆) the spin gap is reduced (see Fig. 5) and the spin gap is the lowest
energy scale. Consequently, the low-T behavior exhibits exponential activation
associated with the spin gap. On the other hand, for small energy spacing the
physics become local (Kondo regime) and the low-T sharp peak shifts towards
higher temperatures and becomes broader.
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Figure 9. Specific heat as a function of temperature with V = 0.4 and various values of t =
0.2, 0.6 and 1.0. The low-T peak for larger energy spacing is due to the spin gap.

Disordered Clusters

1. Effect of Disorder

The configurations for x ≤ 3 are shown in Fig. 10, left panel, along with
the value of the spin, Sg, of the ground-state. The A (B) atoms are denoted
by closed (open) circles, respectively. Except for the homogenous cases (x=0
and x = 6), with a Sg = 0 ground state, for all x there are configurations
with Sg 	= 0. The average occupation and average LM for the periodic Kondo
and MV lattices are < nAf >= 1, < (µAf )2 > = 0.99, and < nBf > = 1.6,
< (µBf )2 > = 0.43, respectively. We carry out a detailed analysis for x=1
(Sg =2) to demonstrate the FM transition induced by a single MV atom in an
otherwise Kondo cluster. Studies of extended systems have reported similar
occurrence of ferromagnetism in the MV phase[29]. As expected, the sin-
glet ground state of the x = 0 Kondo cluster is characterized by n.n. anti-
ferromagnetic (AF) f-f spin correlations (< SA

f (i)SA
f (i + 1) > = - 0.58). The

introduction of a MV atom renders them ferromagnetic. Since UB is small,
the B impurity tends to remove charge from the the conduction band, in par-
ticular from the k-state with εk = −t, which has large amplitude at the B site
and at the opposite A site across the ring. Such a depletion is different for the
two spin states, thus yielding a maximum value for the f-moment of the MV
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Figure 10. Left panel: Alloy configurations for various concentrations x ≤ 3 (the x > 3
cases are obtained by exchanging closed and open circles). For each x ≤ 3 configuration, the
value of the ground-state spin Sg is reported. Right panel: Energy difference (in units of 10−4t
) between the lowest S ≤ 2 eigenstates and the ground state as function of εB .

atom. The f -f spin correlation function between the Kondo and MV atoms
are AF (< SA

f (i)SB
f (i+ 1) > = - 0.23), while they are FM among the Kondo

atoms (< SA
f (i)SA

f (i+ 1) > = +0.94). A similar result was recently found in
ab initio calculations[30], where introducing a nitrogen impurity in small (1-5
atoms) Mn clusters induces ferromagnetism via AF coupling between the N
to the Mn atoms, whilst Mn-Mn couple ferromagnetically. We find that there
is a crossover in Sg from 0 → 1 → 2 → 0 (Fig. 10, right panel) indicating
a reentrant nonmagnetic transition around εB = 2. This almost saturated FM
Sg = 2 domain is robust against small changes in UB , V , εA, UA, cluster size
(N = 7), and band filling (Nel = 10) provided that the Kondo atom has a large
LM.

In Fig. 11 we present Tχfx(T ) as a function of temperature for different x.
As T → 0 (inset Fig. 11) Tχfx(T ) approaches a finite value for x = 1 − 4
while it vanishes exponentially for x=0, 5 and 6. This is due to the fact that the
former concentrations involve some configurations which are magnetic, while
the latter have singlet ground states (Fig. 10). The stronger (weaker) low-
temperature dependence for x = 1 (x = 2 − 4) is due to the smaller (larger)
spin gap between the ground state and the lowest excited states. The magnetic
susceptibility displays also a magnetic crossover upon varying x, and reveals
a Curie-like divergence at low T for x = 1 − 4. The temperature-dependent
results for the specific heat, not reported here, show corroborative evidence of
this disorder-induced magnetic crossover.

2. Effect of Energy Spacing
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Figure 11. Temperature dependence of the average f-susceptibility for different alloy concen-
trations. The inset shows the low-temperature behavior.

Next we address a number of important open issues, namely (1) the effect of ∆
on the interplay between RKKY and Kondo interactions in disordered clusters,
(2) the characterization of the single-impurity "Kondo correlation energy" TK
in a dense-impurity cluster and (3) the effect of disorder and ∆ on the distribu-
tion of the local TK’s. In the following, εB = −2.

In contrast with previous studies, which introduced a phenomenological dis-
tribution P (TK) of single-impurity Kondo temperatures, the advantage of the
present calculations is that one calculates exactly the Kondo correlation en-
ergy: we employ the so-called “hybridization” approach[31], with TK defined
as

kBTK(i) = Eg(Vi = 0) − Eg, (8)

where Eg(Vi = 0) is the ground-state energy of the dense-impurity cluster
when V is set to zero at the ith site. Eq.(8) reduces to kBTK = Eband −EF +
εf − Eg[22, 32] in the single impurity case. Here, EF is the highest occupied
energy level in the conduction band and Eband is the conduction band energy.
This definition of the local TK takes into account the interaction of the f -
moment at site i with the other f -moments in the system [33].

In Table I we list for the periodic, x=0, case the local Kondo f-c spin cor-
relation function < SA

f (i)SA
c (i) >, the n.n. f-f spin correlation function

< SA
f (i)SA

f (i+1) >, and the local Kondo temperature for two different values
of t (The energy spacing is ∆ = 4t/(N − 1) ≡ 4t/5). As t or ∆ decreases
the f-c spin correlation function is dramatically enhanced while the f-f corre-
lation function becomes weaker, indicating a transition from the RKKY to the
Kondo regime. This is also corroborated by the increase in the local TK(i).
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The energy spacing affects not only the magnetic (A) atoms but the MV atoms
as well. Thus, increasing t drives the B atoms from the non-magnetic, NM
(nf ≈ 2), to the MV and finally to the Kondo regime.

We next examine the role of even versus odd number of electrons on the
magnetic behavior of the uniform x=0 case. For t = 1, changing the number
of electrons from Nel = 12 to Nel = 11 results in: (a) an enhancement of the
local Kondo f-c spin correlation function, < SA

f (i)SA
c (i) > from -0.01 to -

0.12; and (b) a suppression of the nearest-neighbor f-f spin correlation function
< SA

f (i)SA
f (i + 1) > from -0.58 to -0.20 (Due to the broken symmetry for

Nel = 11, the f-f spin correlation functions range from -0.5 to +0.02). This
interesting novel tuning of the magnetic behavior can be understood as follows:
For an odd-electron cluster, the topmost occupied single particle energy level
is singly occupied. On the other hand, for an even-electron cluster, the topmost
occupied single-particle energy level is doubly occupied, thus blocking energy-
lowering spin-flip transitions. This energy penalty intrinsically weakens the
Kondo correlations[19]. As expected, changing the number of electrons from
even to odd changes Sg = 0 to Sg = 1

2 . For t= 0.05 (Kondo regime), the on
site f-c correlation function does not depend as strongly on the parity in the
number of electrons because the sites are locked into singlets. On the other
hand, < SA

f (i)SA
f (i+ 1) > becomes suppressed as in the case of large energy

spacing. Similar results were found for the various disordered concentrations.
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250a) t=0.05 b) t=1.0
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Figure 12. A-atoms: Local Kondo Temperatures (in K) vs the local f-c spin correlation
function, for different configurations and two different values of t. The closed circles refer to
the x = 0 case and the lines are a guide to the eye.

In Fig. 12 we present the local TK(i) as a function of the local f-c spin
correlation function < SA

f (i)SA
c (i) > for all Kondo (A) atoms in the singlet

ground state at any concentration x for t= 0.05 and 1.0. Note the different
scales both on the horizontal and vertical axis in the panels. In both panels,
the closed circles correspond to the x=0 lattice case and the line is a guide to
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Table 1. Local Kondo f-c and n.n. f-f spin correlations functions and the local Kondo tempera-
ture (in K) for two values of t (in eV). The average energy spacing is ∆ = 4t/(N − 1) ≡ 4t/5.

< SA
f (i)SA

c (i) > < SA
f (i)SA

f (i + 1) > TK(i)

t=0.05 -0.626 -0.322 551.8
t=1.00 -0.011 -0.584 173.4

the eye. The results indicate a correlation between TK and the f-c spin cor-
relation function (the larger TK’s correspond to the more negative f-c values)
as one would expect, since both provide a measure of the Kondo effect. For
t=0.05, most of the disordered cluster configurations are in the Kondo regime
(Sg = 0), with larger TK values; consequently, panel (a) has a larger number of
singlet configurations. The introduction of MV impurities induces a distribu-
tion of TK(i)’s, whose values are overall enhanced compared to those for the
x=0 case, except for several configurations for t=0.05, in contrast with single-
site theories for extended systems[5]. It is interesting that P (TK) for t=0.05
exhibits a bimodal behavior centered about 710 and 570K, respectively: The
higher TK’s originate from isolated Kondo atoms which have MV atoms as n.n.
so that the local screening of the magnetic moment of the A atom is enhanced.

The effect of alloying and ∆ on the RKKY versus Kondo competition for
a given x is seen in Fig. 13 (left panel), where the configuration averaged
local < SA

f (i)SA
c (i) >x and < SA

f (i)SA
f (i + 1) >x correlation functions

are plotted as a function of t. The solid curves denote the uniform x=0 case,
where we drive the cluster from the RKKY to the Kondo regime as we decrease
t. We find that the stronger the average Kondo correlations are the weaker the
average RKKY interactions and vice versa. In the weak Kondo regime the
configurations exhibit a wider distribution of RKKY interactions indicating
that they are sensitive to the local environment. In contrast, in the strong Kondo
regime, the Kondo (A) atoms become locked into local Kondo singlets and the
n.n. RKKY interactions are insensitive to the local environment. Interestingly,
both energy spacing and disorder lead to an overall enhancement of the RKKY
interactions compared to the homogenous state.

In the right panel of Fig. 13 we present the t versus x phase diagram
for the nanocluster at T = 0 . We compare the < SA

f (i)SA
c (i) >x and

< SA
f (i)SA

f (i+ 1) >x to assign a state of specific concentration to the Kondo
or RKKY regimes (black and gray circles, respectively), in analogy with the
x = 0 case (Table I) and with mean field treatments[27]. The horizontal gray
stripes denote qualitatively ranges of twhere the B atoms exhibit NM, MV and
LM behavior. An interesting feature of the phase diagram is the appearance of
a large FM region (Sg 	= 0) enclosed by the dashed line. The RKKY region at
large t and large x originates from the B atoms which become magnetic. For
the non FM configurations and for x < 5 the Kondo (RKKY) correlations of
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Figure 13. Left panel: Configuration-averaged local f-c (top) and n.n. f-f spin correlations
(bottom) for the A atoms as function of t. The solid line refers to the homogenous x = 0 case.
Right panel: Zero-temperature t vs x phase diagram for the nanocluster. Black (gray) circles
denote the Kondo (RKKY) regime. The white circles and the dashed contour delimit the FM
region. The horizontal stripes denote the non-magnetic (NM), mixed valence (MV) and local
moment (LM) behavior of the B-atoms.

the A atoms dominate at small (large) t, in analogy with the x = 0 case. On
the other hand, for x = 5 the local Kondo correlations of the single A atom
at low t dominate over the f-f correlations between the A-B and B-B pairs.
For the uniform (x=6) MV case we include only results in the large t regime,
where the MV atoms acquire LM’s which couple antiferromagnetically. Over-
all, the RKKY interactions prevail for any concentration when t is comparable
or larger than the hybridization V .

4. CONCLUSIONS

Recent advances in STM experiments have made it possible to study the
electronic and magnetic properties of strongly correlated electrons in nanoscopic
and mesoscopic systems. There are two main differences between nanosized
clusters and the infinite lattice. First, the discrete energy levels of the con-
duction band states introduce a new low-energy scale, i.e., the average energy
level spacing ∆. This new energy scale that competes with the spin gap can
effect the low-temperature behavior of the system. Second, the results depend
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on the parity of the total number of electrons. If Ntot is odd, the ground state
is doubly degenerate.

We have carried out exact diagonalization calculations which reveal that the:
(1) energy spacing; (2) parity of the number of electrons; and (3) disorder, give
rise to a novel tuning of the magnetic behavior of a dense Kondo nanocluster.
This interesting and important tuning can drive the nanocluster from the Kondo
to the RKKY regime, i.e. a tunable “Doniach" phase diagram in nanoclusters.
We have employed the criterion of comparing the exact non local versus local
spin correlation functions to determine if the nanocluster lies in the RKKY ver-
sus Kondo regime. For weak hybridization, where the spin gap is smaller than
∆, both the low-temperature local f susceptibility and specific heat exhibit an
exponential activation behavior associated with the spin gap. In contrast in
the large hybridization limit, ∆ is smaller than the spin gap, the physics be-
come local and the exponential activation behavior disappears. The interplay
of ∆ and disorder produces a rich structure zero-temperature alloy phase di-
agram, where regions with prevailing Kondo or RKKY correlations alternate
with domains of FM order. The distribution of local TK and RKKY interac-
tions depends strongly on the local environment and are overall enhanced by
disorder, in contrast to the hypothesis of single-impurity based “Kondo dis-
order” models for extended systems. We believe that the conclusions of our
calculations should be relevant to experimental realizations of small clusters
and quantum dots. For example, the recent experiments[21] of magnetic clus-
ters on single-walled carbon nanotubes of varying size provide much flexibility
for investigating the interplay of Kondo and RKKY effects at different energy
scales.
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