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Abstract

We present an improved quantum mechanical (QM) and molecular mechanical
(MM) coupling method for the study of metallic systems. The improved method
is based on the earlier work of Choly et al (2005 Phys. Rev. B 71 094101). In
this approach, quantum mechanical treatment is spatially confined to a small
region, surrounded by a larger molecular mechanical region. This approach
is particularly useful for systems where quantum mechanical interactions in
a small region, such as lattice defects or chemical impurities, can affect the
macroscopic properties of a material. We discuss how the coupling across the
different scales can be accomplished efficiently and accurately for metals. The
method is tested by performing a multiscale simulation of bulk aluminium (Al)
where the coupling errors can be easily analysed. We then apply the method to
study the core structure and Peierls stress of an edge dislocation in Al

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The challenge in computational materials science and engineering is that real materials usually
exhibit phenomena on one scale which require a very accurate and computationally expensive
description and phenomena on another scale for which a coarser description is satisfactory
and, in fact, necessary to avoid prohibitively large computations. It is the hope that multiscale
modelling approaches may be the answer to such a challenge, and they are by definition
computational approaches that take advantage of the multiple scales present in a material and
build unified descriptions by linking the models specialized at different scales.

Two categories of multiscale simulations can be envisioned, sequential, consisting of
passing information across scales, and concurrent, consisting of seamless coupling of scales [1].
The majority of multiscale simulations that are currently in use are sequential and are effective
in systems where the various scales are weakly coupled. An example of a sequential approach
is the Peierls—Nabarro (PN) model which essentially establishes a connection between atomic
and continuum length scales [1,2]. The information passed across the scales is the generalized
stacking fault energy surface which can be determined accurately from the density functional
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theory (DFT) calculations. In systems where the coupling across different length scales is
strong, concurrent approaches are usually required. In contrast to sequential approaches,
concurrent simulations are still relatively new and only a few models have been developed
to date [3-19]. In a concurrent simulation, the system is often partitioned into domains
characterized by different scales and physics. The challenge of any concurrent approach
lies in establishing a high quality coupling between the regions which are treated by different
computational methods. Notably, Choly et al have recently put forward a general concurrent
method which couples DFT-based quantum mechanical simulations to classical atomistic
simulations for metallic materials [9]. The efficiency and accuracy of this coupling scheme have
been demonstrated in bulk and a screw dislocation in Al. More recently, a multiscale approach
was developed that concurrently couples DFT calculations for electrons to the embedded-
atom-method (EAM) [20] simulations for classical atoms and to the finite-element modelling
for elastic continuum in a unified fashion [11]. The approach, referred to as QCDFT, is based
on the formalism of Choly ef al and the quasicontinuum method [3, 8] and has been applied
to study an edge dislocation in Al in the absence and presence of hydrogen impurities [11].
Despite the apparent success of the concurrent approach of Choly et al , non-negligible errors
nonetheless exist across the DFT/EAM boundary [9]. More specifically, when the interaction
energy between the quantum and classical regions is determined from a classical simulation, the
forces on the atoms are determined by DFT and EAM cluster calculations where the fictitious
surface effects cannot be fully cancelled owing to the mismatch in DFT/EAM forces on the
surface atoms. The surface effects obtained can introduce substantial errors on the position of
the atoms at the domain boundary and degrade the coupling across the boundary.

It is the purpose of this paper to present an improvement over Choly’s approach, which
significantly reduces the coupling errors of the original approach. The improved method does
not introduce any additional computational effort and is easy to implement. We demonstrate
the effectiveness of the improved approach by carrying out a comparative study of bulk Al.
Furthermore, we apply the new method to compute the Peierls stress of an edge dislocation in
Al. The computation of Peierls stress in Al represents a difficult task because of its extremely
low value. Numerical uncertainties arising from the application of boundary conditions,
interatomic potentials and interpretation of the results could be comparable to the value of the
Peierls stress itself. Hence, there have been large discrepancies in the theoretical/computational
estimates of the Peierls stress in Al. On the experimental side, the situation is not better—the
two orders of magnitude discrepancy between the Peierls stress estimated from internal friction
measurements and that from mechanical testing has been tantalizing for decades [21,22]. Since
the present method contains an accurate description of the dislocation core via DFT along with
a reliable long-range elastic field provided by EAM, one would expect that it will give a more
reliable estimate of the Peierls stress compared with previous studies.

The paper is organized as follows. In section 2, we describe the original and improved
methods. In section 3, we compare the results for bulk Al using the new approach with those of
the original approach and demonstrate the improved coupling across the boundary. In section 4,
we present results for the dislocation core properties, including the Peierls stress for an edge
dislocation in Al using the improved method. A short summary is given in section 5.

2. Method and improvement

Following the earlier work of Choly et al [9], the total energy of the entire system can be
expressed as

E[1+ 1] = Eppr[l] + Egam[II] + E™[I, 11], (1)
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Figure 1. Schematic of the division of the system in the present multiscale approach. The entire
system is divided into regions I and II. The atoms marked by ‘B’ denote the boundary DFT atoms
upon which the force correction is applied. The atoms marked by ‘D’ denote inner DFT atoms or
defect core atoms (see text for details).

where I refers to the small region where detailed physics are relevant and II refers to the rest of
the system (figure 1). Epgr[I] is the energy of region I in the absence of region II obtained by
DFT cluster calculations, Egam[I1] is the energy of region II obtained from EAM calculations
in the absence of region I (i.e. void calculations) and E™{I, II] represents a formal interaction
energy added to give the correct total energy of the entire system. The crux of a multiscale
modelling lies in the determination of E int[1 T1]. Different choices made for the calculation of
E™[I, II] may result in distinct coupling methods. A similar energy expression of equation (1)
had been proposed by others [23].
The interaction energy between the subsystems I and II can be written formally as

EM™[I11] = E[1+11] — E[I] — E[II]. 2)

In the present approach, the interaction energy is calculated by using the classical EAM
potential, i.e.

E™[L 1] = Egamll + 1] — Egam[l] — Egaml[I1]. 3)

This of course represents an approximation to E'™ which stipulates that the interaction energy

be calculated only at the EAM level, the same as Egapm[1I]. This is a reasonable approximation

because most of the atoms in a typical system are in region II and thus are described by EAM.

Although more sophisticated methods, such as orbital-free DFT, could be used to calculate

E™ the ensuing computational effort would be much greater [9]. In other words, the present

approach represents a reasonable compromise between accuracy and computational time.
This choice of the interaction energy results in a total energy of

E[R"'] = Egam[R"™'] — Egam[R'] + 1}1111}1 Epgrlp', R'] )
p

for a given ionic configuration R' = R'UR™ (R! and R" are used to denote the sets of nuclear
coordinates in region I and region II, respectively). The advantage of the formulation is its
simplicity. It demands nothing beyond what is required for a DFT cluster calculation and two
EAM calculations (one for bulk and the other for a cluster). A major practical advantage of
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this approach is that, if region I contains many different atomic species while region II contains
only one atom type, there is no need to have a classical potential for each species and their
interactions. This results from the fact that if the various species of atoms are well within
region I, then the energy contributions of these atoms cancel out in the total energy calculation
(the first two terms in equation (4)). Thus, this concurrent approach is particularly useful in
dealing with impurities, which is an exceedingly difficult task for classical simulations. Note
that the forces on the atoms in region II are identical to the forces on these atoms if the EAM
potential was used for the entire system; that is to say, as far as forces are concerned, DFT
atoms act as if they were EAM atoms (this can be seen by taking the derivatives of equation (4)
with respect to R'™).
On the other hand, the forces on DFT atoms in region I are

JE[+11]

Fil] = —
[ T

= FFMI+10] — FEAM[T] + FPET(I). 3)
If the cutoff length of the EAM potential is r., then those atoms in region I whose distance
from the boundary is larger than r, will experience a force entirely from F ?FT[I]. Although
these DFT atoms do not feel the presence of the EAM atoms, there are still errors in the force
and position of these atoms due to the presence of the fictitious surface inherent in the cluster
calculations of region I. On the other hand, the force on the DFT atoms that are within the
distance r.. from the boundary has contributions both from FPFT[T] and FEAM[T + T1] — FEAM[T].
Thus, the errors in the force on these DFT atoms are due to (1) the force mismatch between the
DFT and EAM calculations and (2) the fictitious surface effects. It has been demonstrated [9]
that the maximum and average force errors on the DFT atoms are 0.45eV A~! and 0.33 eV A~!,
respectively, in Al. The corresponding errors on the atomic positions are 0.12 A and 0.07 A,
respectively.

In order to improve the coupling between regions I and II, we propose the following
simple correction to the original approach. A third region, referred to as the boundary region,
is introduced, as shown in figure 1, which consists of several layers of DFT boundary (B)
atoms next to the DFT/EAM boundary. As shown below, although the boundary DFT atoms
are included in the DFT cluster calculations of Eppr[1], their positions are actually determined
by the EAM bulk force calculations. Namely, the atomic positions of the boundary atoms
do not suffer from the fictitious surface effects, and they serve as a buffer to protect the inner
DFT atoms from being exposed to the fictitious surface at the boundary. These inner DFT
atoms are of greater interest to a given problem. For example, they could be the core of lattice
defects (such as crack tip, dislocation core, grain boundary or interface), chemical impurities
and active site or reaction centre, which largely determine the properties of materials. The
accurate treatment of these inner DFT atoms is the focal point of the present multiscale method.
More specifically, the force on the boundary DFT atoms is corrected with the term

F°"[B] = —FPFT[B] + FEAM[B], (6)

so that the force on the boundary atoms is identical to that derived from the EAM calculations
for the entire bulk system (I+I1):

F;[B] = FiM[1+11]. @)

Since EAM gives satisfactory results for bulk properties (typically EAM potentials are fitted to
reproduce bulk properties), the force on these boundary DFT atoms should be rather accurate
provided that they are sufficiently far away from the defect centre. On the other hand, the
force on the inner DFT atoms is determined according to equation (5), as in the original
approach. Consequently, the force due to the presence of the fictitious surface is eliminated
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on the boundary DFT atoms, thus protecting the inner DFT atoms from the fictitious surface.
The total energy in the revised coupling scheme needs to be corrected accordingly

(B)
E[1+1I] = E[I+1I] - Y F{"[B] - u;[B], ®)

where u;[B] is the displacement of the ith boundary atom at each relaxation step. The sum
is over all boundary atoms (B). It is clear from equation (8) that the force on region II atoms
and inner DFT atoms is not affected by the correction. This energy correction is similar to
that of the ghost force in the quasicontinuum approach and it represents the work done by the
correction force [8]. The energy correction is not part of E™. As will be shown in section 3,
this simple correction can significantly reduce the force errors on both DFT and EAM atoms,
with no additional computational effort.

The equilibrium structure of the entire system is obtained by minimizing the total energy
in equation (8) with respect to all degrees of freedom. Because the time required to evaluate
Eppr[1] is considerably more than that required to compute the EAM energetics, an alternate
relaxation scheme turns out to be rather efficient. The total system can be relaxed using the
conjugate gradient approach on the inner DFT atoms alone, while fully relaxing the EAM atoms
in region II and the boundary atoms. Following Choly ef al, an auxiliary energy function that
only depends on the inner DFT positions can be defined as

E'[R"] = min E[R"™]. ©)
{RH,B}

The significance of E’ is that its gradient with respect to R} can be easily evaluated:
9E'  JE[R™) . JE[R“] ORY i,
R OR  “ OR] OR|

(10)

) E[ Rtot]
~ OR!

where the second term on the right-hand side of the first equation vanishes because all
derivatives are evaluated at the minimum of E [R™'] with respect to R". The introduction
of E’ allows for the following relaxation algorithm. (i) Minimize E [R™"] with respect to R"
and the boundary DFT atoms while holding the inner DFT atoms fixed. This only involves
the EAM calculations. (ii) Calculate min,, Eprr[ph; R"] and Egam[R'] and the forces on the
inner DFT atoms. (iii) Perform one step of a gradient-based minimization of E’ on the inner
DFT atoms. (iv) Repeat the process until the entire system is relaxed. In this way, the number
of DFT calculations is greatly reduced, albeit at the expense of more EAM calculations. The
total number of DFT energy calculations for the relaxation of an entire system is about the
same as that required for DFT calculations for the relaxation of region I alone.

’

3. Test of the improved method

In this section we compare the improved approach with the original one for the case of bulk Al.
The system consists of 6 x 6 x 6 cubic unit cells (4 atoms per cell) of crystalline fcc Al. Region
I comprises the innermost 108 (3 x 3 x 3) atoms, and all other atoms are in region II. The
separation in two regions is shown schematically in figure 1, where region I, within the dashed
box, consists both of inner DFT atoms (denoted by ‘D’) and boundary DFT atoms (denoted
by ‘B’). The first shell of DFT atoms is selected as boundary atoms. For each relaxation step,
a DFT cluster calculation is performed for region I whereas two separated EAM calculations
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Table 1. Comparison of the maximum displacements from the perfect lattice positions for atoms
in region I and region II, without and with the force correction on the boundary atoms. We also list
the average displacements for atoms in region I (Aul,) and region IT (Aull,) without and with the
force correction.

Without correction  Correction

(A) A
B 0.07 0.0014
D 0.05 0.003
(Aul) 003 0.0007
i 0.005 0.002
(Aully  0.007 0.0003

are carried out, one for the entire system (I+II) and the other solely for region I. Note that
the first EAM calculation employs the periodic boundary conditions, while the second EAM
calculation is non-periodic (cluster calculation). For the DFT cluster calculation, we employed
the plane-wave pseudopotential VASP package [24] for a cluster with a 8 A vacuum along the
+x, £y and %z directions. The energy cutoff for Al is 129 eV. Only one k-point, I" point, is
used in the calculation.

The system was initially arranged in the perfect fcc lattice configuration and was then
allowed to relax. Because the EAM potential used in the calculations [25] gives a lattice
constant of 3.986 A, which is slightly smaller than the corresponding DFT value of 3.990 A,
we have scaled the EAM potential so that the lattice constant from the EAM potential exactly
matches the DFT value. Obviously, if the coupling between region I and region II works
perfectly, the entire system would simply behave like ideal bulk Al, i.e. the system will not relax
at all because the force on all atoms vanishes. On the other hand, any non-zero displacements
from the initial equilibrium positions are indications of coupling errors. In table 1, we present
the maximum relaxation displacements from the perfect lattice positions for both the boundary
and the inner DFT atoms in region I, for the EAM atoms in region II, as well as the corresponding
average value. For the boundary DFT atoms in region I and the EAM atoms in region II, the
maximum displacements are reduced by more than one order of magnitude with the improved
coupling method. The maximum displacements on the inner DFT atoms and the average
atomic displacements in both regions are also significantly decreased. The displacements on
the inner DFT atoms can be further reduced if more layers of boundary atoms are included.
This however requires region I be large enough so that the inner DFT atoms are well separated
from the boundary. Nevertheless, the improved coupling method allows a systematic reduction
of coupling errors at a reasonable computational expense. The detailed comparison of atomic
displacements in region I before and after the force correction is shown in figure 2.

4. Core properties of an edge dislocation

In this section we apply the improved coupling method to study the core structure and mobility
of an edge dislocation in Al. Dislocations are a good test for multiscale approaches because
their properties depend both on the atomistic details at the core and the long-range elastic strain
field. More importantly, there is a wide range of conflicting experimental and theoretical results
on the Peierls stress of dislocations in Al. The Peierls stress is defined as the minimum stress
required to move a straight dislocation irreversibly on its glide plane [27,28]. Theoretical
values range from 1073 x to 10~ u for an edge dislocation, and experimental measurements
span from 2.7 x 107 11 to 1073 y1, where p is the shear modulus of Al In the present paper,
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Figure 2. Displacement vectors of DFT atoms in region I without (left) and with (right) the
force correction on the boundary atoms. The length of the arrow represents the magnitude of the
displacement vector. The same scale is used in both figures.

the [1 1 0] shear modulus x is about 26 GPa, obtained from the scaled EAM calculations; the
corresponding DFT value is 27 GPa. The discrepancies in Peierls stress have led to various
suggestions, such as the existence of a multiple core structures [26] or the interaction of
vacancies with the dislocation core [29]. Therefore, it is of scientific interest to revisit the
problem by multiscale modelling.

The edge dislocation with a Burgers vector 5[110] in Al (@ = 3.990 A) is studied in

this paper. The dimensions of the entire system are 237 A x 37 A x 4.86 A and those of
region I are 30 A x 15 A x 4.86 A. The dislocation line is along the [1 12] (z) direction and
the glide direction is along the [1 1 0] (x) direction; the normal direction of the glide plane is
[111]. There are 126 DFT atoms in region I and 2748 EAM atoms in region II. One layer of
DFT atoms in region I which are adjacent to EAM atoms in region II is chosen as boundary
atoms. All atoms are initially displaced according to the anisotropic elastic solution of the
dislocation. The boundaries along the x and y axes are held fixed to the elastic solution values
during the relaxation process. Periodic boundary conditions are applied along the z direction
to simulate a straight dislocation. The DFT calculations for region I are performed with a
cluster of a 8 A vacuum along both the #-x and +y directions. The same energy cutoff of
129 eV is used. We find that 8 k points along the one-dimensional Brillouin zone are adequate
for good convergence.

The dislocation core structure is summarized in figure 3. The top panel shows the relative
atomic displacement across the glide plane along the x (solid line) and z (dashed line) directions.
The x (z) components correspond to the edge (screw) components of the displacement field.
The corresponding dislocation density (the derivative of the relative displacement with respect
to x) is presented in the lower panel. The double-peak in the dislocation density plot suggests
that the dislocation is dissociated into two Shockley partials whose positions are represented
by the peaks. The partial separation distance is 5.9 A, and the corresponding experimental
measurement is about 5.5 A [30]. The dislocation core width, which is defined as the atomic
distance over which the x-relative displacement changes from %b to %b, is 5.5A.

Because of its extremely low value, the theoretical determination of the Peierls stress in
fcc metals has been challenging. The computational errors arising from the inaccuracy of the
interatomic potentials, the deficiencies of continuum-based models and the improper use of
boundary conditions [31] can easily reach or exceed the magnitude of the Peierls stress itself.
Similarly, experimental measurement of the Peierls stress in Al has not been easy, evidenced
by the two orders of magnitude of uncertainty in the results, from 2.7 x 107> 4 to about 1073 .
To determine the Peierls stress with the present method, we apply periodic boundary conditions
along both the x and z directions. Note that this is different from the core structure calculations
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Figure 3. Top panel: the x component (solid line) and the z component (dashed line) of the relative
atomic displacement as a function of x. Bottom panel: the x component (solid line) and the z
component (dashed line) of the Burgers vector density as a function of the x coordinate. The
double-peak structure in the density plot illustrates the dislocation dissociation into partials.

where the fixed boundary conditions were applied in the x direction. The advantage of using
the periodic boundary conditions along the x direction is that the Peach—Koehler forces acting
on any of the dislocations arising from their periodic images cancel identically due to the
translational symmetry in x, whereas the fixed boundary conditions introduce fictitious forces
from the boundary walls. In the simulation, we gradually increase the external force on the
top-layer atoms along the x direction while holding the bottom-layer atoms fixed and relax the
rest of the system using the conjugate gradient method described above. The applied external
force on each atom is given by the desired applied shear stress multiplied by the area per atom.
The centre of the dislocation is determined from the x position where the screw component
of the dislocation density changes sign. We find that the centre of dislocation starts moving at
the shear stress of 2.5 x 1073 ., and the centre displacement reaches about one Burgers vector
(~2.86 A) under the shear stress of 7.5 x 1073 1. According to the definition of Peierls stress
introduced earlier, we estimate the Peierls stress to be 7.5 x 1073 4. This result is close to
the experimental value of 8§ x 1073 w from Bujard and coworkers [22,32]. A similar result
was obtained by applying the shear stress simultaneously on both the top and bottom layers.
It should be noted that the present calculations of Peierls stress represent a preliminary result,
and further studies by other ab initio-based multiscale methods, such as in [19], are needed to
ascertain the precise value of the Peierls stress.

For comparison, we have also performed EAM calculations for the entire system. The
Peierls stress thus obtained is about 4.5 x 10~* W, which is one order of magnitude smaller than
the corresponding value derived from the present multiscale method. Moreover, the dislocation
core width is about three times larger than that from the multiscale simulations. Therefore the
lower value of the Peierls stress received from EAM simulation is consistent with the fact that
the Peierls stress is smaller for a wider dislocation.

Finally, we calculate the Peierls stress by following the method introduced by Fang and
Wang et al [33], which uses fixed boundary conditions along the x direction. In Wang’s
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Figure 4. Applied shear stress as a function of the dislocation translation (open circles). The solid
curve is the least-square fit of the simulation data to equation (11) of Wang et al ’s method, which
yields a Peierls stress of about 0.036 . The dashed curve is a guide to the eye.

approach, the applied shear stress, 7, as a function of the dislocation translation, u, is written as

. (27wu . (4mu
T(u) = Ku + 718in R + Tp8in ) (1)

where K is a constant representing the magnitude of the image force caused by the fixed
boundaries, d is the period of the Peierls potential which is the Burgers vector for an edge
dislocation and 7; and 7, are constants. The Peierls stress is the maximum value of the sum
of the last two terms in equation (11). The results (open circles) of the applied shear stress as
a function of the dislocation translation are shown in figure 4. The solid curve in the figure,
which is a least-square fit of the data to equation (11), yields a Peierls stress of 0.036, which is
much greater than the value of 7.5x 107> obtained from the multiscale approach, suggesting
that equation (11) may not be generally applicable.

5. Summary

In conclusion, we have presented an improved coupling scheme for the multiscale modelling
approach of Choly er al which concurrently couples DFT-based quantum mechanical
calculations with empirical EAM simulations for metals. Within this scheme, the force on
the DFT/EAM boundary atoms is determined from the EAM bulk calculations rather than
from the combined DFT/EAM cluster calculations proposed in the original approach. In this
way, the fictitious surface effects on the inner DFT atoms have been largely removed. The
improved scheme reduces the coupling errors on the boundary DFT atoms and the EAM atoms
by more than one order of magnitude for bulk Al, compared with the original approach. We
have applied the improved method to study the core properties of an edge dislocation in Al.
The Peierls stress of the dislocation is determined to be 7.5 x 1073 i or 195 MPa. It should
be noted that the present estimate of Peierls stress needs to be further corroborated by other
ab initio-based multiscale approaches or experiments.
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