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We review here several multiscale methods that we have developed to determine dislocation prop-
erties and interactions in metals. The review includes: (1) dislocation core properties in fcc and bcc
metals; (2) the effect of solutes or nanoprecipitates on the mobility of a screw dislocation in bcc met-
als; (3) the interaction between dislocations and precipitates in intermetallic compounds; and (4) the
transmission of dislocations through coherent and incoherent interfaces. In the concurrent quan-
tum mechanical (QM) and molecular mechanical (MM) coupling approach, the quantum mechanical
treatment is spatially confined to a small region, surrounded by a larger classical atomistic region.
This approach is particularly useful for systems where quantum mechanical interactions in a small
region, such as lattice defects or chemical impurities, can affect the macroscopic properties of a
material. We discuss how the coupling across the different scales can be accomplished efficiently
and accurately. We have applied this method to study the core structure and mobility of an edge
dislocation in Al and of a screw dislocation in Ta, which are prototypical fcc and bcc metals. We find
that the local environment of W solutes in Ta has a dramatic effect both on the dislocation mobility
and slip paths. Isolated W solutes enhance the dislocation mobility, W nanoclusters of triangular
shape pin the dislocation, while those of hexagonal shape result in spontaneous dislocation glide.
The first sequential multiscale approach is a hybrid ab initio-based approach of Suzuki’s atomic-row
(AR) model, which allows the study of the dislocation core of a screw dislocation in bcc metals.
The second hybrid approach, based on an extension of the Peierls-Nabarro model to study the
dislocation-interface and the dislocation-precipitate interactions, integrates the atomistic nature from
ab initio calculations of the generalized stacking fault energy surface (GSFS) into the parametric
dislocation dynamics method. The ab initio-based calculations reveal that Cu nano-clusters in �-Fe
dramatically alter the core structure of a screw dislocation from non-polarized in pure Fe to polar-
ized, in agreement with experiments. In contrast, Cr clusters do not change the core polarization
and increase the Peierls stress, thus hardening Fe. The hybrid method with four different interac-
tion models was applied to study the interaction of a superdislocation with a spherical �-precipitate
embedded in the � ′-matrix of a nickel-based superalloy. The dislocation core structure was found
to play an important role in determining the critical resolved shear stress. Based on these simu-
lations, analytical equations for the precipitate strengthening are derived. For the Cu/Ni interface,
the dislocation is found to dissociate into partials in both Cu and Ni, and the dislocation core is
squeezed near the interface facilitating the spreading process, and leaving an interfacial ledge. It
is shown that the strength of the bimaterial can be greatly enhanced by the spreading of the glide
dislocation, and also increased by the pre-existence of misfit dislocations.
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1. INTRODUCTION

Dislocations, which are one-dimensional topological
defects, are central to the understanding of mechanical
properties of metals. The creation and motion of disloca-
tions mediate the plastic response of a crystal to exter-
nal stress. While the continuum elasticity theory describes
well the long-range elastic strain of a dislocation for length
scales beyond a few lattice spacings, it breaks down near
the singularity in the region surrounding the dislocation
center, known as the dislocation core. The discrete nature
of the crystalline lattice avoids the conceptual difficulty
posed by the continuum singularity and recovers the struc-
tural differentiation smoothed out by the continuum elas-
ticity. There has been a great deal of interest in describing
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accurately the dislocation core structure on an atomic scale
because of its important role in many phenomena of crys-
tal plasticity. The core properties control, for instance, the
mobility of dislocations, which accounts for the intrinsic
ductility or brittleness of solids. The core is also impor-
tant for the interaction of dislocations at close distances,
which are relevant to plastic deformation. The atomic posi-
tions around the dislocation core can be studied experi-
mentally by, e.g., transmission- or high-resolution electron
microscopes.1–4

Face-centered cubic (fcc) and body-centered cubic
(bcc) metals and their alloys exhibit unique mechanical
properties that make them attractive both for structural
applications at elevated temperatures and for interconnect
applications. An inherent drawback limiting the use of
bcc materials as structural components is their reduced
low-temperature toughness, which in turn increases the
propensity towards fracture. Thus, the challenge in design
of advanced alloys is to combine strengthening and
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toughening phases with a better balance of properties. The
dislocation core behavior in fcc and bcc materials is very
different.
The core in fcc tends to be planar and is associated with

the sliding of the close-packed (111) crystal planes across
one another. A full dislocation with burgers vector b =
a/D2�110� (in units of the lattice parameter a) dissociates
into two Shockley partial dislocations, bounding an area
of stacking fault (SF) according to the scheme,

b→ b1p+b2p

a

2
�110�→ a

6
�211̄�+SF+ a

6
�121� (1)

Because the partial Burgers vectors lie on the same (111)
plane, the Shockley partials glide in that plane and spread
out in extent. The presence of SF in fcc metals stems from
the particular ABCABCABC sequence of (111) planes.
The equilibrium splitting width, d, of the dissociated dis-
location is determined by the balance of the repulsive elas-
tic forces and the attractive force from the stacking faults.
For example, for the perfect edge dislocation, continuum
elastic theory gives a partials separation of

dSF =
�b2

24��isf

2+�

1−�
(2)

where b = a/
√
2 is the Burgers vector, � is the Poisson’s

ratio, and �isf is the intrinsic stacking fault energy. The
intrinsic stacking-fault configuration corresponds to a slip
of bp = a/

√
6 in the Ref. [112] direction, resulting in the

stacking ABC|BCABC. Values of stacking fault energies in
fcc metals lie in the range of 30 mJ/m2 (Ag) to 170 mJ/m2

(Al), except for the anomalous high value of 400 mJ/m2

in Ir.5 The value of d serves as a check of the reliability
of the multiscale method employed.
The microscopic origin of plasticity is far more com-

plex and less well understood in bcc metals than in their
fcc counterparts. In bcc metals stable stacking faults do
not exist and the plastic deformation is mainly controlled
by the intrinsic core properties of a/2�111� screw dislo-
cations. Unlike the highly mobile edge dislocations, the
motion of screw dislocations is restricted by a non-planar
atomic core structure which must contract before it moves.
The most prominent aspects of the deformation behavior of
bcc materials that relate to properties of screw dislocations
are the characteristic temperature (for T < 0�2Tmelt, where
Tmelt is the melting temperature) and strain-rate depen-
dence of the flow stress, the twinning-antitwinning asym-
metry of the yield and flow stresses, and the existence of a
ductile-to-brittle transition at low temperature.6	7 At very
low temperatures or at extreme strain rates the screw dislo-
cations move as straight lines, while at finite temperatures
and usual strain rates their motion proceeds via formation
and migration of pairs of kinks.6

However, in most situations, dislocation behavior is con-
siderably different in the realistically dirty materials, where

dislocation mobility can vary by several orders of mag-
nitude, depending on the type, concentration, and local
environment of the solute. Since plastic deformation in
metals is mediated by the motion dislocations that produce
a long-range stress, the dislocation-solute or dislocation-
precipitate interaction is of great practical importance.
Solute atoms or nano-clusters, which are ubiquitous in
metals, play a key role in altering their mechanical prop-
erties (e.g., strength, ductility). Experimental studies dur-
ing the past several decades indicate that solutes can give
rise to both solid-solution hardening (SSH) and softening
(SSS).8	9 In the SSS phenomenon, the effect of alloying
decreases the yield strength at low temperatures and low
impurity concentrations. These observations clearly sug-
gest that another contribution to dislocation mobility stems
from a rather strong sensitivity to trace amounts of substi-
tutional and/or interstitial impurities, the origin of which
has not yet been clarified.10 The intrinsic mechanisms
of SSS have been attributed to mismatch in size and in
shear moduli between solute and matrix atoms. However,
recently, the chemical or electronic mechanism on both
the kink formation and migration rates in Mo has been
shown to play an important role.11	12 An outstanding chal-
lenge for dislocation modeling is an accurate and realistic
description of interactions between dislocations and impu-
rity atoms and clusters. Such a description can provide the
basis for understanding the thermodynamics and kinetics
of co-evolution of dislocation and alloy microstructures.
The influence of interfaces on the mechanical properties

of multiphase and polycrystalline materials is ubiquitous.13

Interfaces serve as barriers to dislocation motion modi-
fying the strength, as easy paths for crack propagation
affecting toughness, etc. Nanolayered metallic composites,
composed of alternating layers of soft metals, have been
shown14 to possess strengths of several GPa, often within a
factor of two to three of the theoretical strength limit, when
the bilayer periods are on the order of a few nanometers.
Experiments on model systems such as Cu–Ni15 and Cu–
Nb16 indicate that, in the micron to sub-micron range, the
strengths of these materials increase with microstructural
refinement according to the Hall-Petch relation17	18


HP = 
0+
kHP√
d

(3)

where 
HP is the critical resolved shear stress required
to push the leading dislocation in the pile-up past the
obstacle, 
0 is a friction stress for dislocation glide, d is
the distance between the barriers, kHP =√

�b
cr/� is the
Hall-Petch coefficient, and � is the shear modulus. How-
ever, as the layer thickness is reduced to the nm-scale,
the number of dislocations in a pile-up approaches unity
and the pile-up based Hall-Petch model ceases to apply.
In the few to a few tens of nanometers range, the increase
in yield strength of nanolaminates with decreasing layer
thickness is interpreted in terms of the confined layer slip

J. Comput. Theor. Nanosci. 7, 1–30, 2010 3
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of single dislocations. As layer thickness is decreased to a
couple nanometers, the strength reaches a peak with weak
or no dependence on layer thickness. It has been suggested
that the peak strength is determined by the stress needed
to transmit single dislocations across the interface.19

Studies of large atomic systems require approxima-
tions and simplifications when describing atomic interac-
tions that may, however, obliterate some important features
of bonding. For this reason, the most challenging aspect
of materials modeling is the choice of the description of
atomic interactions that correctly and with sufficient accu-
racy reflects the physics of bonding in any specific case,
while at the same time it is computationally tractable.
In Section 2, we review various concurrent and sequen-
tial multiscale approaches we have developed recently, to
study the dislocation core properties in
(1) fcc and bcc metals;
(2) the effect of chemistry on the dislocation mobility; and
(3) the transmission of a dislocation through a coherent
and incoherent interface.

In Section 3.1 we present results for the dislocation core
properties, including the Peierls stress for an edge dis-
location in Al using the improved concurrent multiscale
method. In Section 3.2 we present results of the concurrent
multiscale approach of the effect of the local environment
(random solid solution or nano-clusters of different geom-
etry) of W in Ta on the dislocation mobility. In Section 3.3
we employ the sequential inter-row multiscale approach to
study the effect of Cu or Cr solutes and solute-clusters on
the dislocation core properties of the a/2�111� screw dislo-
cation in �-Fe. The hybrid atomistic-continuum approach
is presented in Section 3.4 to study the interaction between
a superdislocation and �-precipitates embedded in the � ′

matrix of a nickel-based superalloy. In Section 3.5 we
present results for the transmission of a dislocation across
a coherent and incoherent Cu–Ni interface. Finally, we
present our conclusions in Section 4.

2. MULTISCALE APPROACHES

The challenge in computational materials science and engi-
neering is that real materials usually exhibit phenomena
on one scale that require a very accurate and computa-
tionally expensive description, and phenomena on another
scale for which a coarser description is satisfactory and,
in fact, necessary to avoid prohibitively large computa-
tions. It is the hope that multiscale modeling approaches
may be the answer to such challenge. These computational
approaches take advantage of the multiple scales present
in a material and build unified descriptions by linking the
models specialized at different scales.
There are two categories of multiscale simulations:

sequential, consisting of passing information across scales,
and concurrent, consisting of seamless coupling of
scales.20 The majority of multiscale simulations that are

currently in use are sequential, and are effective in systems
where the various scales are weakly coupled. An exam-
ple of a sequential approach is the Peierls-Nabarro (PN)
model which essentially establishes a connection between
atomic and continuum length scales.21–23 The information
passed across the scales is the generalized stacking fault
energy surface which can be determined accurately from
density functional theory (DFT) calculations. In systems
where the coupling across different length scales is strong,
concurrent approaches are usually required. In contrast
to sequential approaches, concurrent simulations are still
relatively new and only a few models have been devel-
oped to date.24–39 In a concurrent simulation, the system
is often partitioned into domains characterized by dif-
ferent scales and physics. The challenge of any concur-
rent approach lies in establishing a high quality coupling
between the regions which are treated by different com-
putational methods. Notably, Choly et al. have recently
put forward a general concurrent method which couples
DFT-based quantum mechanical (QM) simulations to clas-
sical molecular mechanics (MM) simulations for metallic
materials.30 The efficiency and accuracy of this coupling
scheme have been demonstrated in bulk and a screw dis-
location in Al. More recently, a multiscale approach was
developed that concurrently couples DFT calculations for
electrons, to the embedded-atom-method (EAM)40 simula-
tions for classical atoms, and to the finite-element mod-
eling for elastic continuum in a unified fashion.32 The
approach, referred to as QCDFT is based on the formalism
of Choly et al. and the quasicontinuum method 24	29 and
has been applied to study an edge dislocation in Al in the
absence and presence of hydrogen impurities.32 Despite
the apparent success of the concurrent approach of Choly
et al., non-negligible errors nonetheless exist across the
DFT/EAM boundary.30 More specifically, when the inter-
action energy between the quantum and classical regions
is determined from a classical simulation, the forces on
the atoms are determined by DFT and EAM cluster calcu-
lations where the fictitious surface effects cannot be fully
canceled owing to the mismatch in DFT/EAM forces on
the surface atoms. The surface effects can introduce sub-
stantial errors on the position of the atoms at the domain
boundary, and degrade the coupling across the boundary.
In Section 2.1 we present an improvement over Choly’s

approach, which significantly reduces the coupling errors
of the original approach.38 We demonstrate the effective-
ness of the improved approach by carrying out a compar-
ative study of bulk Al. In Section 2.2 we describe two
different sequential multiscale methods.

2.1. Concurrent Multiscale Approach

The concurrent multiscale approach is based on that pro-
posed by Choly et al.,30 which, however, significantly
reduces the coupling error of the original approach.

4 J. Comput. Theor. Nanosci. 7, 1–30, 2010
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The improved method does not introduce any additional
computational effort and is easy to implement.38	39 Fur-
thermore, it yields a Peierls stress for an edge dislocation
in Al in good agreement with experiment and for Ta in
excellent agreement with the FP-GFBC method,37 which
correctly couples the strain field of the dislocation core to
the long-range elastic field. The system, shown in Figure 1,
is divided into: Region I, which includes the dislocation
core and the solutes, is treated within the framework of
DFT; Region II which refers to the rest of the system is
treated with the EAM or Finnis-Sinclair (FS) potentials;
and the boundary (B) region, which is introduced to reduce
the coupling errors between the two regions.
The total energy of the entire system can be

expressed as30

E�I+ II�= EDFT�I�+EEAM�II�+Eint�I	 II� (4)

Here, EDFT�I� is the energy of region I in the absence of
region II obtained by DFT cluster calculations; EEAM�II�
is the energy of region II obtained from EAM calcula-
tions in the absence of region I (i.e., void calculations);
and Eint�I	 II� represents a formal interaction energy added
to give the correct total energy of the entire system. The
crux of multiscale modeling lies in the determination of
Eint�I	 II�. Different choices made for the calculation of
Eint�I	 II� may result in distinct coupling methods. Sim-
ilar energy expression of Eq. (4) had been proposed by
others.41

The interaction energy between the subsystems I and II
can be written formally as

Eint�I	 II�≡ E�I+ II�−E�I�−E�II� (5)

II B D I

Fig. 1. Schematic view of the partitioned multiscale system: Region I
(red) contains the core of the screw dislocation (dark red marked by D);
Region II (blue) consists of atoms treated with EAM; and the boundary
(B) region (green) consists of atoms on the boundary between regions I
and II. Periodic boundary conditions are used along the �111� dislocation
line.

In the present approach, the interaction energy is calcu-
lated using the classical EAM potential, i.e.,

Eint�I	 II�= EEAM�I+ II�−EEAM�I�−EEAM�II� (6)

This of course represents an approximation to Eint which
stipulates the interaction energy be calculated only at
EAM level, the same as EEAM�II�. The approximation is
reasonable because most of the atoms in a typical sys-
tem are in region II and thus are described by EAM.
Although more sophisticated methods, such as orbital-free
DFT, could be used to calculate Eint, the ensuing compu-
tational effort would be much greater.30 In other words,
the present approach represents a reasonable compromise
between accuracy and computational time.
This choice of the interaction energy results in a total

energy of the form,30	38

E�I+ II�= EEAM�I+ II�−EEAM�I�+EDFT�I� (7)

where EEAM�I+ II� is the energy of the entire region cal-
culated from the EAM, and EEAM�I� and EDFT�I� are the
energies of Region I in the absence of II obtained by EAM
and DFT calculations, respectively.38	39 The advantage of
the formulation is its simplicity. It demands nothing beyond
what is required for a DFT cluster calculation and two
EAM calculations (one for bulk and the other for a clus-
ter). A major practical advantage of this approach is that,
if region I contains several atomic species while region II
contains only one atom type, there is no need to have a clas-
sical potential for each species and their interactions. This
results from the fact that if the various species of atoms
are well within region I, then the energy contributions of
these atoms cancel out in the total energy calculation (the
first two terms in Eq. (7)). Thus, this concurrent approach
is particularly useful in dealing with impurities, which is
an exceedingly difficult task for classical simulations.
The forces on the atoms in region II (derivatives of

Eq. (7) with respect to the nuclear coordinates, RII, in
region II) are identical to the forces on these atoms if the
EAM potential were used for the entire system; that is to
say, as far as forces are concerned, DFT atoms act as if
they were EAM atoms. On the other hand, the forces on
DFT atoms in region I are

Fi�I�=−�E�I+ II�
�RI

i

= FEAM
i �I+ II�−FEAM

i �I�+FDFT
i �I�

(8)
If the cutoff length of the EAM potential is rc, then those
atoms in region I whose distance from the boundary is
larger than rc will experience a force entirely from FDFT

i �I�.
Although these DFT atoms do not feel the presence of the
EAM atoms, there are still errors in the force and posi-
tion of these atoms due to the presence of the fictitious
surface inherent in the cluster calculations of region I. On
the other hand, the force on the DFT atoms that are within
distance rc from the boundary has contributions both from

J. Comput. Theor. Nanosci. 7, 1–30, 2010 5
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FDFT
i �I� and FEAM

i �I+ II�−FEAM
i �I�. Thus, the errors in the

force (ghost forces) on these DFT atoms are due to (1)
the force mismatch between the DFT and EAM calcu-
lations, and (2) the fictitious surface effects. It has been
demonstrated30 that in Al, the maximum and average force
error on the DFT atoms are 0.45 eV/Å and 0.33 eV/Å,
respectively. The corresponding errors on the atomic posi-
tions are 0.12 Å and 0.07 Å, respectively.
In order to improve the coupling between regions I

and II, we have proposed the following simple correction
to the original approach.38 A third region, referred to as
the boundary region is introduced, as shown in Figure 1,
which consists of several layers of DFT boundary (B)
atoms next to the DFT/EAM boundary. As shown below,
although the boundary DFT atoms are included in the DFT
cluster calculations of EDFT�I�, their positions are actually
determined by the EAM bulk force calculations. Namely,
the atomic positions of the boundary atoms do not suf-
fer from the fictitious surface effects, and they serve as a
buffer to protect the inner DFT atoms from being exposed
to the fictitious surface at the boundary. These inner DFT
atoms are of greater interest to a given problem. For exam-
ple, they could be the core of lattice defects (such as crack
tip, dislocation core, grain boundary or interface), chem-
ical impurities, active site or reaction center, etc, which
largely determine the properties of materials. The accurate
treatment of these inner DFT atoms is the focal point of
the multiscale method presented here. More specifically,
the force on the boundary DFT atoms is corrected with the
term

Fcorr
i �B�=−FDFT

i �B�+FEAM
i �B� (9)

so that the force on the boundary atoms is identical to
that derived from the EAM calculations for the entire bulk
system (I+ II).

Fi�B�= FEAM
i	B �I+ II� (10)

Since the EAM gives satisfactory results for bulk proper-
ties (typically EAM potentials are fitted to reproduce bulk
properties), the force on these boundary DFT atoms should
be rather accurate, provided that they are sufficiently far
away from the defect center. On the other hand, the force
on the inner DFT atoms is determined according to Eq. (8),
as in the original approach of Choly et al.30 Consequently,
the force due to the presence of the fictitious surface is
eliminated on the boundary DFT atoms, thus protecting
the inner DFT atoms from the fictitious surface. The total
energy in the revised coupling scheme needs to be cor-
rected accordingly

Ẽ�I+ II�= E�I+ II�−∑

i∈B
Fcorr
i �B� ·ui�B� (11)

where ui�B� is the displacement of a boundary atom at
each relaxation step, and the sum is over all boundary
atoms (B). It is clear from Eq. (11) that the force on region

II atoms and inner DFT atoms is not affected by the correc-
tion. This energy correction is similar to that of ghost force
in quasicontinuum approach.29 As will be shown below,
this simple correction can significantly reduce the force
errors on both DFT and EAM atoms, with no additional
computational effort.
The equilibrium structure of the entire system is

obtained by minimizing the total energy in Eq. (11)
with respect to all degrees of freedom. Because the time
required to evaluate EDFT[I] is considerably more than
that required to compute the EAM energetics, an alter-
nate relaxation scheme turns out to be rather efficient. The
total system can be relaxed using the conjugate gradient
approach on the inner DFT atoms alone, while fully relax-
ing the EAM atoms in region II and the boundary atoms.
Following Choly et al., an auxiliary energy function that
only depends on the inner DFT positions can be defined as

E ′�RI�≡ min
�RII	B


Ẽ�Rtot� (12)

The significance of E ′ is that its gradient with respect to
RI

i can be easily evaluated:

�E ′

�RI
i

= �Ẽ�Rtot�

�RI
i

+∑

j

�Ẽ�Rtot�

�RII
j

�RII
j	min

�RI
i

= �Ẽ�Rtot�

�RI
i

	 (13)

where the second term on the right hand side of the first
equation vanishes because all derivatives are evaluated at
the minimum of Ẽ�Rtot� with respect to RII. The introduc-
tion of E ′ allows for the following relaxation algorithm in
the present method:
(i) Minimize Ẽ�Rtot� with respect to RII and the boundary
DFT atoms while holding the inner DFT atoms fixed. This
step involves only the EAM calculations;
(ii) Calculate min��I
 EDFT��

I�RI� and EEAM�R
I�, and the

forces on the inner DFT atoms;
(iii) Perform one step of a gradient-based minimization of
E ′ on the inner DFT atoms; and
(iv) Repeat the process until the entire system is relaxed.

In this way, the number of DFT calculations is greatly
reduced, albeit at the expense of more EAM calculations.
The total number of DFT energy calculations for the relax-
ation of an entire system is about the same as that required
for DFT calculations for the relaxation of region I alone.
We have compared the improved approach with the orig-

inal one for the case of bulk Al. The system consists of
6×6×6 cubic unit cells (4 atoms per cell) of crystalline
fcc Al. Region I comprises the innermost 108 (3×3×3)
atoms, and all other atoms are in region II. The first shell
of DFT atoms is selected as boundary atoms. For each
relaxation step, a DFT cluster calculation is performed for
region I whereas two separated EAM calculations are car-
ried out, one for the entire system (I+ II) and the other
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solely for region I. Note that the first EAM calculation
employs the periodic boundary conditions, while the sec-
ond EAM calculation is non-periodic (cluster calculation).
The system was initially arranged in the perfect fcc lat-
tice configuration, and then was allowed to relax. Because
the EAM potential used in the calculations42 gives a lat-
tice constant of 3.986 Å, which is slightly smaller than
the corresponding DFT value of 3.990 Å, we have scaled
EAM potential so that the lattice constant from the EAM
potential matches exactly the DFT value. Obviously, if the
coupling between region I and region II works perfectly,
the entire system would simply behave like ideal bulk Al,
i.e., the system will not relax at all because the force on
all atoms vanishes. On the other hand, non-zero displace-
ments from the initial equilibrium positions are indications
of coupling errors. In Table I, we present the maximum
relaxation displacements from the perfect lattice positions
for both the boundary and the inner DFT atoms in region
I, for the EAM atoms in region II, as well as the corre-
sponding average value.
For the boundary DFT atoms in region I and the

EAM atoms in region II, the maximum displacements are
reduced by more than one order of magnitude with the
improved coupling method. The maximum displacements
on the inner DFT atoms and the average atomic displace-
ments in both regions are also significantly decreased.
The displacements on the inner DFT atoms can be further
reduced if more layers of boundary atoms are included.
This however requires region I be large enough so that
the inner DFT atoms are well separated from the bound-
ary. Nevertheless, the improved coupling method allows a
systematic reduction of coupling errors at reasonable com-
putational expense. The detailed comparison of atomic dis-
placements in region I before and after the force correction
is shown in Figure 2.

2.2. Sequential Multiscale Approaches

In this Section we describe two different sequential mul-
tiscale approaches. The first is a hybrid ab initio-based
approach of the atomic-row (AR) model of Suzuki43

which allows the study of the dislocation core of a
screw dislocation in bcc metals. It serves as a link

Table I. Comparison of the maximum displacements from the perfect
lattice positions for atoms in region I and region II, without and with
the force correction on the boundary atoms. We also list the average
displacements for atoms in region I (�uI

av) and region II (�uII
av) without

and with the force correction.

Without correction With correction
(Å) (Å)

Boundary atom 0�07 0�0014
DFT atom in I 0�05 0�003
(�uI

av) 0�03 0�0007
EAM atom in II 0�005 0�002
(�uII

av) 0�007 0�0003

Fig. 2. Displacement vectors of DFT atoms in region I without (left)
and with (right) the force correction on the boundary atoms for bulk
Aluminum. The length of the arrow represents the magnitude the dis-
placement vector. The same scale is used in both figures.

between ab initio and atomistic approaches, and repre-
sents a compromise between computationally efficiency
and accuracy. The inter-row potential (IRP), derived from
ab initio calculations, allows the treatment of solutes in the
core, while the dislocation core structure is determined by
relaxing the ARs using the IRP,12 similar to atomistic sim-
ulations employing interatomic interactions. The second
hybrid approach is based on an extension of the Peierls-
Nabarro model to study the dislocation-interface interac-
tion, and integrates the atomistic nature from ab initio
electronic structure calculations into the parametric dislo-
cation dynamics (PDD) method.44

2.2.1. Hybrid Ab Initio-Based Atomic-Row Model

Ab initio calculations of dislocations and dislocation-solute
interactions, even though most accurate, are computation-
ally expensive. As a result, most atomistic simulations
are based on empirical descriptions of atomic interactions.
However, such approaches depend critically on the inter-
atomic potentials which are determined by fitting to exper-
imental or ab initio data, and hence they are limited to
describing accurately the effects of alloying.
The IRP, ��Fe−X��ũ�, between two ARs consisting of Fe

and X (X = Fe, Cu, Cr) atoms, respectively, is assumed to
depend only on the relative displacement, ũ, of the ARs
along the dislocation line and is of the form,43

��Fe−X��ũ� = �
�Fe−X�
0

�1−4��Fe−X��
�cos2�ũ−��Fe−X� cos4�ũ

+ 1
2
�1−��Fe−X��� (14)

Here, ũ= u/b, where u is the relative displacement and b
is the Burgers vector. The parameters ��Fe−X�

0 and ��Fe−X�

are determined from ab initio calculations. Note, that the
IRP approach neglects the edge component of the dis-
placement field, which is important for the core struc-
ture, mobility and kink nucleation.45 The change in energy,
�E�Fe−X��ũ�, per unit length to displace an AR of X atoms
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in the core along �111� relative to a nearest-neighbor (NN)
Fe atomic row

�E�Fe−X��ũ�= 3���Fe−X��ũ−1/3�+��Fe−X��ũ−1/3��
(15)

can be evaluated by ab initio calculations. The parameters
�

�Fe−X�
0 and ��Fe−X� can then be determined from Eqs. (14)

and (15). The change of inter-row energy has been recently
used to study the SSS or SSH in Mo when solute atoms
are substituted into that row.11

Spin-polarized ab initio calculations were carried out
using the VASP code.46	47 The supercell, shown in
Figure 3, consists of three atomic layers in the �111� direc-
tion and 12 atoms per layer. The ARs are along �111� each
represented by a circle. We have used a 4×4×8 k-mesh
according to the Monkhorst-Pack scheme.48 The general-
ized gradient approximation functional49 is used to treat
the exchange and correlation potential. The Fe-X IRP is
determined by substituting one atomic row, denoted by
yellow in Figure 3, with the X solute. For the X–X IRP
we substitute the central AR and its six NN rows, denoted
by yellow, with solute atoms.
In order to model a dislocation using the ab initio-based

IRP approach, a a/2�111� screw dislocation is placed at
the center of a rectangular cell of 101.4 Å×87.8 Å×2.48
Å along the [11̄0], [112̄], and [111] directions, respec-
tively. The slab contains 1875 ARs with a periodic length
of 1b along the dislocation line. The displacements of the
two outermost boundary rows of the slab along the �110�
and �112� directions are held fixed to the elastic solution
values during the relaxation process. The initial geome-
try for the dislocation in pure Fe is the displacement field
�ui
 from isotropic elasticity theory, which is adequate for
bcc Fe (nearly isotropic). Atomic row positions are in turn
relaxed by minimizing the total energy

Etot =
1
2

∑

i	 j	 i 	=j

��Fe−X��ui−uj� (16)

Fig. 3. [111] projection of the supercell used for the calculation of
�E�Fe−X�. The different circle sizes denote atoms on three successive
�111� layers. The Fe atoms are denoted by blue (dark gray), and the
solute atoms are denoted by yellow (light gray).

using the conjugate gradient approach. Here, the sum is
only over NN ARs.

2.2.2. Hybrid Atomistic-Continuum Approach for
Dislocation-Interface Interaction

The mechanical properties of an interface are determined,
in large part, by the nature of the chemical bonding at
the interface, which may be significantly different from
that within either of the materials meeting at the interface.
The variation of the generalized stacking fault surface
(GSFS) of the interface, the existence of misfit disloca-
tions, and the lattice mismatch can act as barriers to dis-
location motion and transmission across the interface. In
recent years, there has been considerable interest in the
mechanical and structural properties and the deformation
mechanisms of metallic multilayer systems, which display
remarkably high mechanical strength and hardness compa-
rable to their theoretical strength.14 The dramatic enhance-
ment of multilayer strength has been generally attributed to
the following factors: the mismatch in the elastic properties
which results in image forces on the dislocation, the mis-
match in the GSFS between incoming and outgoing planes
which plays a major role in determining the core properties
of the dislocation, the mismatch in the lattice parameters
that leads to the generation of coherency stress across the
interface, and the GSFS of the interface which may sup-
press or enhance the spreading of the dislocation core from
the glide plane to the interface. Additionally, the existence
of misfit dislocations affects the overall strength of mul-
tilayers as a result of their mutual interaction with glide
dislocations.
Continuum elasticity approaches have been devel-

oped for both welded and slipping interfaces.50 Recently,
Han and Ghoniem51 have developed a Green’s function
approach for the elastic field of three-dimensional disloca-
tion loops in anisotropic multilayer materials. As expected,
the image force, which is accurately described by linear
elasticity,52	53 diverges in the vicinity of the dislocation
core. In order to overcome this difficulty, an arbitrary cut-
off radius, r0, is generally introduced but its actual value is
highly uncertain. Consequently, important quantities, such
as the critical stress required to make the dislocation cross
the interface, are not accurately determined unless r0 is
calibrated with atomistic calculations.
On the other hand, molecular dynamics (MD) simula-

tions have been used extensively to study different defor-
mation mechanisms in bimaterials. The MD simulations
of Hoagland et al.54 have shown that coherency stresses
and interface dislocations play a critical role in deter-
mining how the layered microstructure behaves under an
applied load. The MD simulations of Rao and Hazzledine
demonstrated55 that a screw dislocation in Cu forms inter-
facial dislocations in the Cu/Ni twinned interface and hence
prefers to spread on the interface rather than to transmit
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to Ni. Other MD simulations have also indicated that the
intrinsic resistance to slip transmission for Cu/Nb system
can originate from the low shear strength of the interface.56

Although MD simulations are very useful in revealing
the atomistic mechanism for the strengthening effect in
mulilayers, they suffer from the lack of reliable empirical
potentials for treating interatomic interactions across the
interface,57 especially when one considers new materials
for which empirical interatomic potentials are not available.
Over the past few years, the PN model combined with

ab initio-determined GSFS have been used to study the
dislocation core properties in bulk materials57–60 and the
effect of chemistry on the dislocation core properties in
aluminum.61 The GSFS represents the two-dimensional
energy profile when the two crystal halves above and
below the glide plane are shifted rigidly against each
other by a constant disregistry vector, u. The GSFS-based
approach is essentially a local formulation of the PN model
and it assumes the displacement field to be smooth. For
a dislocation with a wide core as in the case of Cu and
Ni, the strain gradient is relatively small, and therefore,
the local formulation should give a reasonable description
of the dislocation core structure. Although a non-local for-
mulation of the PN model has been proposed,62 it has not
been widely used due to its complexity.
Anderson et al.63–65 have extended the PN model to

investigate the transmission of a screw dislocation across a
coherent, slipping bi-material interface. Anderson and Li63

and Shen and Anderson65 developed a 2D PN model for
the transmission of a screw dislocation across a slipping
and welded interfaces. Their models were able to predict
several trends that give more insight to understanding the
strengthening mechanisms in bimetallic materials. A gen-
eral observation made is that slipping interfaces delocalize
and trap the core of an incoming dislocation. In spite of its
usefulness, Anderson’s model suffers from two shortcom-
ings: First, rather than using an ab initio description of the
atomistic shear on both the glide and interface planes, it
employs a simple sinusoidal form of the � surface which
in turn does not allow dissociation. Second, the possibility
of a pure screw dislocation to dissociate with a Burgers
vector containing an edge component is neglected due to
mathematical difficulties. The present model is similar to
that of Anderson and Li,63 and makes use of ab initio and
the PDD computations to resolve these two issues.
We have developed66 an extension of the PN model

which integrates the atomistic nature from ab initio elec-
tronic structure calculations into the PDD method.44 The
GSFS provides a two-dimensional representation of the
stacking fault energy at zero temperature. Both coherent
and incoherent interfaces are considered and the lattice
resistance of dislocation motion is captured through the
ab initio-determined GSFS. In this study, the core prop-
erties of a pure screw dislocation as it moves from Cu
to Ni are investigated. The effects of the GSFS of the

interface on dislocation core spreading and on the trans-
mission stress is also determined. Additionally, the effect
of pre-existing misfit dislocation on interfacial strength and
dislocation core spreading is investigated.
The PN model used in this work66 is an extension to the

parametric dislocation dynamics model for bulk materials
developed by Banerjee et al.,22	23 the so-called generalized
PN (GPN) model. In this approach, the full dislocation is
represented by a set of N fractional Volterra dislocations
with fractional Burgers vector db = b/N . A right handed
coordinate system as shown in Figure 4 is used. The line of
the screw dislocation is along the z direction, and a suffi-
cient amount of edge components is added by introducing
N/2 positive and N/2 negative fractional edges (Fig. 4(b)).
In contrast to the treatment of Anderson, the atomic dis-

placements of the dislocation have components in all three
directions rather than only along the direction of the Burg-
ers vector. The displacement components of the slip ux

and uz are determined from the positions of the fractional
dislocations of the edge and screw type with fractional
Burgers vector. The equilibrium structure of the dislocation
core is obtained by seeking the equilibrium configuration
of the fractional dislocations. Physically, this corresponds
to balancing the elastic force and the lattice restoring force
for each infinitesimal dislocation across the glide plane.
For a mixed dislocation with components (be, bs) the dis-
placement components can be approximated as

ue�x�= ux�x�=
N∑

i=1

be
i tan

−1�x−xi�+
be

2
(17)

z 

y 

(b)

(a)

x 

(c)

Ni Cu 
X (glide direction)

Y (normal to glide plane)

Int
γInt, γInt

γCu, γCu, γCuγNi, γNi, γNi

Fig. 4. (a) Coordinate system used in the simulations, (b) Schematic
showing the concept of adding extra positive and negative edge com-
ponents for the pure screw dislocation, (c) Schematic of the discretized
Peirels screw dislocation during the transmission process from Cu to Ni.
The Burgers vector and the line sense of the dislocation are along the z

direction. The fractional Burgers vector is bCu/N in Cu, bNi/N in Ni, and
bNi/2N+ (bCu–bNi)/2N in the interface.
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and

us�x�= uz�x�=
N∑

i′=1

bs
i′ tan

−1�x−xi′�+
bs

2
(18)

Here, be
i = be/N and bs

i′ = bs/N are the Burgers vec-
tors of the fractional dislocations, N is the total num-
ber of dislocations of edge and screw type, and xi and
xi′ denote their corresponding positions. The net elastic
force resulting from the interaction between these frac-
tional dislocations is balanced against the lattice restor-
ing force derived from the GSFS across the glide plane.
In this formulation, the GSFS of Cu, Ni, and the Cu/Ni
interface are determined from ab initio electronic structure
calculations.
The PN model has been modified to investigate the

strengthening mechanisms in slipping and rigid Cu/Ni
bimaterial. The effects of mismatch in the (1) elastic prop-
erties, (2) GSFS, and (3) lattice parameters reflecting the
existence of misfit dislocations, are explicitly taken into
account. For a slipping interface, part of the dislocation
content can be accommodated by the interface through dis-
location core spreading. Any dislocation that moves from
the glide plane to the interface is divided into two identical
fractional dislocations, symmetrically placed with respect
to the slip plane. In particular, the mismatch in lattice con-
stant between Cu and Ni is accommodated by the frac-
tional residual slip on the interface. The continuity of the
Burgers vector requires that

bCu = nCudbCu+nNidbNi+2nIntdbInt (19)

where N = nCu+nNi+nInt, nCu, nNi, and nInt are the num-
ber of fractional dislocations in Cu, Ni, and the interface,
respectively, and dbCu = bCu/N , dbNi = bNi/N , and dbInt =
bCu/2N .
For the Cu/Ni bimaterial, the equilibrium condition of a

fractional dislocation i depends on whether the fractional
dislocation is in Cu, Ni or on the interface. The total force
on the ith fractional screw dislocation can be expressed as,

F s
i	Cu =

[
�s
ext +

nCu∑

j=1

�s
Cu−Cu�xi	 xj�+

2nInt∑

j=1

�s
Cu−Int�xi	 yj�

+
nNi∑

j=1

�s
Cu−Ni�xi	 xj�

]
bi	Cu

+ f s
i	Cu+ f coh

i	Cu (20)

F s
i	Int =

[
�s
ext +

nCu∑

j=1

�s
Int−Cu�yi	 xj�+

2nInt∑

j=1

�s
Int−Int�yi	 yj�

+
nNi∑

j=1

�s
Int−Ni�yi	 xj�

]
bi	 Int

+ f s
i	 Int + f coh

i	 Int (21)

F s
i	Ni =

[
�s
ext +

nCu∑

j=1

�s
Ni−Cu�xi	 xj�+

2nInt∑

j=1

�s
Ni−Int�xi	 yj�

+
nNi∑

j=1

�s
Ni−Ni�xi	 xj�

]
bi	Ni

+ f s
i	Ni+ f coh

i	Ni (22)

Here xi, and yi are the positions of the fractional
dislocations on the glide and the interface planes, respec-
tively. The first term �s

ext in each equation is the exter-
nally applied stress along the dislocation line; the second,
third and fourth terms are the stress exerted on the frac-
tional dislocation from other fractional dislocations located
in Cu, on the interface, and in Ni, respectively; the fifth
term is the lattice restoring force derived from the GSFS,
and the last term is the coherency stress. The expressions
for the stress in the above equations are normalized with
respect to the average shear modulus �̄ = ��Cu +�Ni�/2.
Note, that the fourth term, �s

Cu−Ni, in Eq. (20) and the sec-
ond term, �s

Ni−Cu, in Eq. (22) represent the image stresses
(Koehler stresses) resulting from the misfit in the elastic
properties between Cu and Ni. The explicit expressions of
the image stress for the screw and edge components are
given in Refs. [53] and [63], respectively.
We assume here that there is no dislocation climb and

therefore only screw dislocations can spread out onto the
interface. Additionally, the external stress and coherency
stress are applied only to the screw components on the
glide plane; i.e., � ext

Int = 0 and f coh
Int = 0. The expression

for the net force on the ith fractional edge dislocation is
similar to those for a fractional screw dislocation in of
Eqs. (20) and (22), but with the following differences: no
external stress is applied on the edge component and there
is no stress contribution from the interface because the
fractional edge dislocation is confined to the glide plane.
The edge and screw components of the lattice restoring

force, obtained from the GSFS are given by

f e
i =−be

i

��

�ue

∣
∣
∣
∣
x=xi

� f s
i =−bs

i

��

�us

∣
∣
∣
∣
x=xi

(23)

where � is the GSFS of Cu, Ni, or the interface.
The force due to the coherency stress results from the

mismatch in the Cu/Ni lattice parameters. The calculated
uniaxial coherency stress in Cu/Ni bimaterial is around
2.5 GPa,67 which is equivalent to 1.0 GPa when resolved
on the glide plane. In this work the coherency stress is
assumed to be of a step function centered at the interface
with the value �Coh

i = ±1�0 GPa, where the plus (minus)
sign indicates compressive (tensile) stress in Cu (Ni). It
is worth mentioning that the geometry used in the current
work assumes that the interfacial (100) plane is perpendic-
ular to the glide plane (111) to avoid additional computa-
tional complexities. However, in reality the glide plane is
inclined with respect to the interfacial plane by an angle
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� = 58�5
, which in turn leads to asymmetric dislocation
core spreading due to the modification of the image forces.
In this quasistatic framework, the dislocation glide is

controlled by drag, and hence the dislocation velocity is
proportional to the resolved shear stress. Having deter-
mined all the force components, the equilibrium position
of each fractional dislocation is computed according to the
drag dislocation dynamics relation,

Fi = B
dxi
dt

(24)

where B is a drag coefficient to update the position xi of
the dislocation at each time step until the system reaches
equilibrium.
The interfacial strength is determined by computing the

critical value of the external stress required to transmit the
dislocation from Cu to Ni. The external stress is applied
incrementally to push all fractional dislocations across the
interface. When the leading dislocation reaches a criti-
cal distance of 0.04bCu from the interface, there are two
pathways available for the dislocation: it can either spread
onto the interface or continue gliding on the original slip
plane into Ni. The dislocation will follow the lowest-
energy pathway. The process is repeated for all fractional
dislocations while the applied stress keeps increasing until
it reaches its critical value, 
critical, that allows dislocation
transmission.

3. APPLICATIONS

3.1. Core Properties of an Edge
Dislocation in Aluminum

The computation of the Peierls stress in Al represents a
difficult task because of its extremely low value. Numeri-
cal uncertainties arising from the application of boundary
conditions, interatomic potentials and interpretation of the
results could be comparable to the value of the Peierls
stress itself. Hence, there have been large discrepancies
in the theoretical/computational estimates of the Peierls
stress in Al. On the experimental side, the situation is not
better—the two orders of magnitude discrepancy between
the Peierls stress estimated from internal friction measure-
ments and from mechanical testing has been tantalizing
for decades.68	69 Since the concurrent multiscale method
contains an accurate description of the dislocation core via
DFT along with a reliable long-range elastic field provided
by EAM, one would expect that it will give a more reliable
estimate of the Peierls stress compared to previous studies.
We have applied the improved coupling method to study

the core structure and mobility of an edge dislocation in
Al. Dislocations are good test for multiscale approaches
because their properties depend both on the atomistic
details at the core and the long-range elastic strain field.
More importantly, there is a wide range of conflicting

experimental and theoretical results on the Peierls stress of
dislocations in Al. Theoretical values range from 10−5� to
10−4� for an edge dislocation, and experimental measure-
ments span from 2.7×10−5� to 10−3�, where �= 26 GPa
is the [110] shear modulus of Al obtained from the scaled
EAM calculation. The shear modulus agrees very well
with the DFT value of 27 GPa. These discrepancies have
led to various suggestions, such as the existence of a mul-
tiple core structures70 or the interaction of vacancies with
the dislocation core.71 Therefore it is of scientific interest
to revisit the problem by multiscale modeling.
We consider an edge dislocation with a Burgers vec-

tor a/2[110] in Al (�= 3�990 Å). The dimensions of the
entire system are 237 Å× 37 Å× 4.86 Å and those of
region I are 30 Å× 15 Å× 4.86 Å. The dislocation line
is along the [1̄12] (z) direction and the glide direction is
along the [110] (x) direction, and hence the glide plane
(xz) is (11̄1). There are 126 DFT atoms in region I and
2748 EAM atoms in region II. One layer of DFT atoms
in region I that are adjacent to EAM atoms in region II
is chosen as boundary atoms. All atoms are initially dis-
placed according to the anisotropic elastic solution of the
dislocation. The boundaries along the x and y axis are held
fixed to the elastic solution values during the relaxation
process. Periodic boundary conditions are applied along
the z direction to simulate a straight dislocation. The DFT
calculations for region I are performed using the plane-
wave pseudopotential VASP package46	47 with a cluster
of a 8 Å vacuum along both ±x and ±y directions. The
energy cutoff for Al is 129 eV. We find that 8k points
along the one-dimensional Brillouin zone are adequate for
good convergence.
The dislocation core structure is summarized in Figure 5.

The top panel shows the relative atomic displacement
across the glide plane along the x (solid line) and z (dashed
line) directions, corresponding to the edge and screw com-
ponents of the displacement field, respectively. The corre-
sponding dislocation density (the derivative of the relative
displacement with respect to x) is presented in the lower
panel. The double-peak in the dislocation density plot sug-
gests that the dislocation is dissociated into two Shock-
ley partials whose positions are represented by the peaks.
The partial separation distance of 5.9 Å is smaller than the
corresponding value from EAM simulations of 9 Å.72 The
experimental measurement of the partial separation is about
5.5 Å.73 The dislocation core width, which is defined as
the atomic distance over which the x-relative displacement
changes from �1/4�b to �3/4�b, is 5.5 Å.
Because of its extremely low value, the theoretical deter-

mination of the Peierls stress in fcc metals has been
challenging. The computational errors arising from the
inaccuracy of the interatomic potentials, the deficiencies of
continuum-based models, and the improper use of bound-
ary conditions74 can easily reach or exceed the magnitude
of the Peierls stress itself. To determine the Peierls stress
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Fig. 5. Top panel: the x-component (solid line) and z-component
(dashed line) of the relative atomic displacement, corresponding to the
edge and screw components of the displacement field, respectively, as a
function of x. Bottom panel: the x component (solid line) and z compo-
nent (dashed line) of the Burgers vector density as a function of the x

coordinate. The double-peak structure in the density plot illustrates the
dislocation dissociation into partials.

with the present method, we apply periodic boundary con-
ditions along both x and z directions. Note that this is
different from the core structure calculations, where fixed
boundary conditions were applied along the x direction.
The advantage of using periodic boundary conditions along
x, is that the Peach-Koehler forces acting on any of the
dislocations arising from their periodic images cancel iden-
tically due to the translational symmetry along x, whereas
the fixed boundary conditions introduce fictitious forces
from the boundary walls. The external force on the top-
layer atoms is gradually increased along the x direction,
while holding the bottom-layer atoms fixed and relaxing
the rest of the system using the conjugate gradient method
described above. The applied external force on each atom is
given by the desired applied shear stress multiplied by the
area per atom. The dislocation center is determined from
the x position where the screw component of the dislo-
cation density changes sign. We find that the dislocation
center starts moving at the shear stress of 2.5×10−3 �, and
the center displacement reaches about one Burgers vector
(∼2.86 Å) under the shear stress of 7.5×10−3 �. Accord-
ing to the definition of Peierls stress introduced earlier, we
estimate the Peierls stress to be 7.5×10−3 �, in good agree-
ment with the experimental value of 8×10−3 � of Bujard
and coworkers.75 A similar result was obtained by apply-
ing the shear stress simultaneously on both the top- and
bottom-layers. It should be noted that the present calcula-
tions of the Peierls stress represent a preliminary result, and
further studies by other ab initio-based multiscale methods,
such as in Ref. [37], are needed to ascertain the precise
value of the Peierls stress.
For comparison, we have also performed EAM calcula-

tions for the entire system. The Peierls stress thus obtained

is about 4.5×10−4 �, which is an order of magnitude
smaller than the corresponding value derived form the
present multiscale method. Moreover, the dislocation core
width is about three times larger than that from the multi-
scale simulations. Therefore the lower value of the Peierls
stress obtained from the EAM calculations is consistent
with the fact that the Peierls stress is smaller for a wider
dislocation.
Finally, we have calculated the Peierls stress by follow-

ing the method introduced by Wang et al.72 which uses
fixed boundary conditions along the x direction. In Wang’s
approach, the applied shear stress, 
 , as a function of the
dislocation translation, u, is written as


�u�= Ku+ 
1 sin
(
2�u

d

)
+ 
2 sin

(
4�u

d

)
(25)

where K is a constant representing the magnitude of the
image force caused by the fixed boundaries, d is the period
of the Peierls potential which is the Burgers vector for an
edge dislocation, and 
1 and 
2 are constants. The Peierls
stress corresponds to the maximum value of the sum of
the last two terms in Eq. (25). The results (open circles)
of the applied shear stress as a function of the dislocation
translation are shown in Figure 6. The solid curve in the
figure, which is a least-square fit of the data to Eq. (25),
yields a Peierls stress of 0.036 �, which is an order of
magnitude higher than the value of 7.5×10−4 � obtained
from the multiscale approach, suggesting that Eq. (25) may
not be generally applicable.

3.2. Chemistry Effect on Dislocation Mobility in
Refractory bcc Metals

Continuum elasticity theory has provided considerable
insight in describing the long-range effects associated with
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Fig. 6. Applied shear stress as a function of the dislocation translation
(open circles). The solid curve is the least-square fit of the simulation
data to Eq. (25), which yields a Peierls stress of about 0.036 �. The
dashed curve is a guide to the eye.
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mismatch in size and elastic constants between the solute
and host atoms. On the other hand, in their pioneering
work, Trinkle and Woodward11 using the first-principles
Greens function boundary condition (FP-GFBC) method,37

demonstrated that the transition-metal solutes can have
a dramatic effect on the dislocation core and hence the
mobility. This non-linear short-range dislocation-solute
interaction is purely of chemical or electronic origin.11	12

Nevertheless, the understanding of the physics of inter-
actions of dislocations with nano-clusters remains a chal-
lenging problem.
In this section, we apply the novel concurrent multiscale

approach, described in Section 2.1 to study the effects of
chemistry and local environment on the mobility of dislo-
cations including the Peierls stress and Peierls potential in
Ta–W alloys. This approach treats correctly the long-range
elastic field of the dislocation and describes the solute-
host atomic interaction in the core region accurately. The
results demonstrate the dual nature of W solutes: depend-
ing on the solute local environment (random solid solution
or nano-clusters of different geometry and composition),
the mobility and/or Peierls potential may exhibit a wide
spectrum of unusual behavior: SSH, SSS or even a disap-
pearance of the Peierls potential resulting in a spontaneous
dislocation glide in the absence of external stress. Finally,
W solutes can serve as obstacles to dislocation motion and
activate new slip planes.
The size of the entire system is 251 Å×145 Å×2.86 Å

along the �110�, �112�, and �111� directions, respectively,
containing 5,400 atoms. Region I is 22 Å×28 Å×2.86 Å
and contains 96 atoms. All atoms are initially displaced
according to the isotropic elastic solution of the screw
dislocation with Burgers vector �b = �111�a/2, and are
then relaxed by the concurrent multiscale approach, which
takes into account the anisotropic effects. Periodic bound-
ary conditions are applied along the �111� direction and
fixed boundary conditions are employed along the other
two directions, respectively. The DFT cluster calculations
in region I were carried out using the VASP code.46	47 We
have used a 1×1×8 k-mesh according to the Monkhorst-
Pack scheme.48 The generalized gradient approximation
functional49 is used to treat the exchange and correlation
potential, and the cutoff energies are set at 240 eV for
both Ta and W. The EAM calculations employed the Ack-
land potential76 for pure Ta and the Johnson scheme77 for
constructing the Ta–W interatomic potential. It should be
emphasized that the quality of the Ta–W classical inter-
action is not crucial in this multiscale approach, due to
the cancelation between the first two energy terms in
Eq. (7), provided that the various atomic species are well
within region I. The external stress is applied by displac-
ing equally the atoms in the outermost �101̄� and �1̄01�
planes along the �1̄1̄1̄� and �111� directions, respectively.
The corresponding shear stress, �yz, is calculated as the
component of the area-averaged force on the surfaces par-
allel to the Burgers vector.

Fig. 7. DD map of the core of the screw dislocation in Ta under (a)
zero stress (left panel), and (b) 1.8 GPa (right panel). Circles of different
color represent atoms on three successive (111) planes.

In Figure 7 we show the relaxed dislocation core struc-
ture in pure Ta under zero stress (left panel) and 1.8 GPa
(right panel), respectively, using the differential displace-
ment (DD) maps.78 The arrows indicate the relative [111]
displacement of neighboring atoms of the dislocation. The
length (direction) of the arrow denotes the magnitude
(sign) of the displacement difference. When the arrow
touches the centers of the two atoms, their relative dis-
placement is b/3. The dislocation core for pure Ta is non-
degenerate and spreads symmetrically on the six planes.
Upon increasing the shear stress �yz applied on the �101̄�
planes, the dislocation center moves to the next Peierls
valley at the critical stress �P of 1.8 GPa. Comparison of
�P and the core structure in Table II employing different
approaches, demonstrates that the concurrent multiscale
approach is in excellent agreement with the results of the
FP-GFBC method.37

In order to study the effect of local environment of
the solute on the mobility of the screw dislocation we
have considered the cases of: (1) dilute random solid solu-
tions where the dislocation line is affected only by iso-
lated solute atoms (ISA) shown in Figure 8(a), and (2)
small clusters of solute atoms of hexagonal shape (CSA-
H) shown in Figure 8(b) or of triangular shape (CSA-T)
shown in Figure 8(c). In all cases the W concentration is
∼ 6 at.% and the W atoms are denoted with black circles.
The upward triangle, downward triangle, square, and solid
dot denote the position of the dislocation center under 0.0,
1.0, 1.5, and 2.0 GPa, respectively. In the absence of stress
the core center is at point � in panel (d) for the ISA and
the CSA-T cases, while it is unstable [dashed red cross
in panel (b)] for the CSA-H case. Interestingly, in the lat-
ter case the dislocation center is repelled by the CSA-H

Table II. Peierls stress (�P ) and core structure for a screw dislocation
in Ta using the present multiscale approach, the FP-GFBC method, the
EAM, and the modified generalized pseudopotential theory (MGPT).

�P (GPa) Core structure

Present work 1.8 Nondegenerate
FP-GFBC37 1.8 Nondegenerate
EAM79 1.8 Degenerate
MGPT80 0.6 Nondegenerate

J. Comput. Theor. Nanosci. 7, 1–30, 2010 13
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Fig. 8. Screw dislocation slip paths under stress for three configura-
tions of W solutes denoted by black circles: (a) isolated solute atoms
(ISA); and nano-clusters of (b) hexagonal (CSA-H) or (c) triangular
(CSA-T) shape. The upward triangle, downward triangle, square, and
solid dot denote the position of the core center under 0.0, 1.0, 1.5, and
2.0 GPa, respectively. Panel (d) displays the special points and directions
in Figure 9. � indicates the initial position of the dislocation.

and spontaneously moves to the position of the solid red
cross under the precipitate-induced chemical stress. Under
1.0 GPa, both in the ISA and CSA-H cases the disloca-
tion prefers to bypass the W sites and moves on the (01̄1)
plane. Upon increasing the stress to 1.5 GPa, the behav-
ior changes dramatically: the dislocation in ISA continues
to move, while it is pinned in CSA-H. The dislocation in
CSA-H begins to move further under 1.8 GPa, as in the
case in pure Ta. In sharp contrast to the other two cases,
the dislocation core is pinned at � in the CSA-T case until
the stress reaches 2.0 GPa, where the center moves on the
(1̄10) glide plane. The calculated values of critical stress,
�P , and polarization p are listed in Table III, for the ISA,
CSA-H, and CSA-T environments. Both ISA and CSA-H
result in SSS, while CSA-T produces SSH. In all cases,
W solutes have a small effect on the polarization, indi-
cating the absence of correlation between the polarization
and �P .
Edagawa et al.81 suggested that the dislocation motion

in bcc metals can be represented by the Peierls potential
surface (PPS), a 2D surface perpendicular to the Burg-
ers vector. The profile of PPS is a valuable quantity to

Table III. �P (GPa) and polarization p for isolated solute atoms (ISA),
nano-clusters of solute atoms of hexagonal shape (CSA-H) or of triangu-
lar shape (CSA-T), shown in Figure 8.

ISA CSA-H CSA-T

�P 1.0 1.0 2.0
p 0.10 0.04 0.00

measure the lattice resistance to dislocation motion. Using
the present approach we have determined the PPS by
moving the dislocation center along different directions
in Figure 8(d). The PPS along the various �12̄1� direc-
tions for pure Ta, the ISA, and the CSA-T environments
is shown in Figure 9(a) and the corresponding PPS for
CSA-H is shown in Figure 9(b). The Peierls barrier along
the �12̄1� (�–K ′) and �2̄11� (�–J ′) directions are reduced
compared to pure Ta, consistent with the results of �P

in Table III. On the other hand, the CSA-H environment
has a dramatic effect on the PPS along the �1̄21̄� direc-
tion, where the Peierls barrier between � and K is greatly
reduced, which is the reason why the dislocation glides
spontaneously (under zero stress) in Figure 8(b). Finally,
for the CSA-T configuration, the barrier along �12̄1� on the
(1̄01) plane increases, while that along �1̄1̄2� on the (1̄10)
plane remains the same as in Ta. Thus, the dislocation first
glides on the (1̄10) plane, which is different from that in
pure Ta.
In order to understand the underlying mechanism of

the dislocation-solute interaction, we present in Figure 10
the change in energy, �E�X−X��u/b�, per unit length to

–

–

–

–

–

Fig. 9. Peierls potential along the various �12̄1� directions in
Figure 8(d) for: (a) Pure Ta (black solid curve), the ISA (red dashed
curve), and the CSA-T (blue dotted curve); and (b) for the CSA-H (green
solid curve). The direction and special point in parenthesis in Figure 9(a)
correspond to the CSA-T environment.
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Fig. 10. Energy change per unit length, �E�X−X��u/b� (X = Ta, W),
versus the normalized atomic-row displacement u/b along �111�.

displace an atomic row of X atoms (X=Ta, W) by u along
�111� relative to a nearest-neighbor Ta atomic row.11	12	82

We find that W increases substantially the inter-row shear
energies for the Ta–W and W–W rows and the lattice resis-
tance when the dislocation center is in the vicinity of W.
This in turn increases �P and hence SSH. On the other
hand, the dislocation tends to bypass W and changes the
slip plane and/or slip direction. This could be achieved by
either cross-slip or kink formation. The definitive mecha-
nism requires further study. The interplay between disloca-
tion pinning, cross slip, and kink nucleation is responsible
for the multitude of plastic behavior observed in solid-
solution alloys.

3.3. Effect of Cu or Cr Nano-Clusters on
Dislocation Core in �-Fe

The �-Fe-X base alloys (X = Cr, Cu, Ni, etc.) are ideal
systems to study SSH due to the very low solubility of X
in Fe at low temperatures and the importance of solute pre-
cipitation on the irradiation hardening and embrittlement
of low alloy reactor pressure vessel steels.8	10 Previously,
studies based on empirical interatomic potentials were
used to study precipitate interactions in Fe–Cu and have
shown that ∼3 nm Cu precipitates strengthen �-Fe.10	83	84

However, the origin of the electronic structure responsi-
ble for the SSS or SSH in �-Fe remains an unexplored
area thus far,85 because of the inadequacy of empirical
potentials.
The purpose of this work is to present a theoretical study

of the effect of Cu or Cr solutes and solute-clusters on
the dislocation core properties of the a/2�111� screw dis-
location in �-Fe. We employ the ab-initio-based atomic-
row (AR) approach of Suzuki43 discussed in Section 2.2.1,
whose results are corroborated by complementary atom-
istic simulations using empirical interatomic potentials.
The calculations reveal that Cu nano-precipitates induce a
dramatic change in the core structure from non-polarized
in pure Fe to polarized. In sharp contrast, it will be shown

that Cr-precipitates have small effect on the core polariza-
tion and increase the Peierls stress (�P ). The underlying
atomistic mechanism responsible for these uniquely elec-
tronic structure effects will be elucidated here.
Figure 11(a) shows �E�Fe−X� and �E�X−X� versus ũ, for

X = Fe, Cu, and Cr. The corresponding IRP, �Fe−X and
�X−X versus ũ are shown in Figure 11(b). For Fe–Fe, Fe–
Cr and Cr–Cr, �E exhibits two well-pronounced maxima
at u = b/3 and u = 2b/3, associated with both the bcc
structure and the unfilled 3d band for Fe and the solute
atom. On the other hand, Cu solutes reduce dramatically
the atomic-row shear energies for the Fe–Cu and Cu–Cu
rows. Moreover, there is a change of the shape of �E,
which displays a single maximum at u= b/2 for both Fe–
Cu and Cu–Cu. These results clearly demonstrate that Cu
solutes act as lubricants and facilitate the shear process
between the Fe–Cu and Cu–Cu rows. Analysis of the den-
sity of states and charge density indicate that the NN inter-
row interaction for Fe–Fe, Fe–Cr, and Cr–Cr is dominated
by t2g–t2g hybridization at the Fermi energy. The stronger
bonding between NN Cr pairs compared to Fe pairs results
in �E�Cr−Cr� > �E�Fe−Fe�. On the contrary, the Fe–Cu and
Cu–Cu NN inter-row interactions are dominated by t2g–s
hybridization, which being weaker than the t2g–t2g , results
in smaller �E�Fe−Cu�.
In Figure 12(a) we show the relaxed dislocation core

structure for pure Fe employing the differential displace-
ment (DD) maps45	78 for the screw component, using the
ab initio-based IRP approach. The arrows indicate the rel-
ative �111� displacement of neighboring atoms produced
by the dislocation. The length of the arrow is proportional
to the magnitude of the displacement difference and the
direction of the arrow indicates the sign of the displace-
ment difference. When the arrow touches the centers of
the two atoms, their relative displacement is b/3. The ori-
entation of all the {110} and {112} planes belonging to

Fig. 11. (a) Energy change per unit length, �E�Fe−X� and �E�X−X� for
X = Fe, Cu, and Cr, versus the normalized AR displacement u/b along
�111�. (b) Corresponding variation of IRP, �Fe−X and �X−X.
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(a)

(c) (d)

(b)

Fig. 12. DD map of the core for a a/2�111� screw dislocation in
(a) pure Fe, (b) Fe–Cu and (c) Fe–Cr, calculated from the ab initio-
based IRP approach. The hollow circles and solid circles represent Fe
and impurity atoms, respectively. (d) [111] stereographic projection of all
{110} and {112} planes belonging to the [111] zone.

the �111� zone is shown in Figure 12(b). The disloca-
tion core for pure Fe is symmetric (non-degenerate) and
spreads symmetrically on the six planes, in agreement with
recent fully ab initio86 and atomistic87 calculations. The
core structure for a small Cu cluster composed of three
rows along the dislocation core, as shown in Figure 12(b),
changes dramatically from symmetric to non-symmetric
(degenerate), where the dislocation core spreads primarily
into three {110} planes. Thus, the 2.5 Å size Cu cluster
reduces the core non-planarity and renders it to more pla-
nar. In sharp contrast, the three atomic row Cr precipitate
in Figure 12 has a very small effect on the core structure,
i.e., the core remains isotropic as in the case of pure Fe.
The change of the core structure induced by the Cu

nano-precipitate invites the question what is the core struc-
ture of the a/2�111� screw dislocation in pure bcc Cu,
with lattice constant of a0 = 2�866 Å. The core structure
of the screw dislocation in bcc Cu calculated from the
ab initio-based IRP method and the Finnis-Sinclair (FS)
interatomic potential88 is shown in Figures 13(a) and (b),
respectively. Interestingly, both approaches yield a non-
symmetric (degenerate) core structure, similar to that of
the Cu nano-precipitate in pure Fe, indicating that the
unique inter-row energy profile between Cu atomic rows
in Figure 11(a) is responsible for the more planar core
structure.
To quantify the effect of chemistry on the core structure

of Fe, we have calculated the core polarization, p,79

p = 
dAB−dBC
+ 
dCD−dDE
+ 
dEF−dFA

b

(26)

(a) (b)

Fig. 13. DD Map for the core structure for a a/2�111� screw dislo-
cation in pure bcc Cu using the (a) ab initio-based IRP approach and
(b) the FS potential, respectively.

Here, di	 j , (i	 j = A, B, C, D, E, or F) is the relative
displacement between two neighboring atoms in the two
columns denoted as i and j in Figure 12(a). Thus, a sym-
metric core leads to p = 0, while p = 1 corresponds to a
fully asymmetric core. In Table IV we list the polariza-
tion of the dislocation core as a function of the number of
solute ARs. The polarization increases with increasing Cu
concentration, indicating that the Cu–Cu NN atomic pairs
play a significant role on the dislocation core, as pointed
out empirically by Tapasa et al.89 On the other hand, the
polarization is almost independent of the Cr concentra-
tion, as is also evident in Figure 12(c). It is important to
emphasize that due to the small size of the solute precip-
itate, the change of polarization induced by Cu cannot be
attributed to the elastic modulus mismatch between Cu and
Fe. Rather, it is purely a “chemistry effect” whose origin
lies in the different (similar) electronic structure between
Cu (Cr) and Fe, and the change of 3d–3d hybridization in
pure Fe or Fe–Cr system to the 43d–4s hybridization in
the Fe–Cu system. One should expect a similar effect with
other simple-metal alloying elements.
Since the core polarization is a controlling factor of

dislocation mobility,45	90 one would expect that under
external stress, the polarized core in Fe–Cu will behave
differently from the non-polarized one in pure Fe. In order
to corroborate the results of the ab initio-based inter-row
approach and to study the effect of external stress, we
have carried out also static atomistic simulations at zero
temperature based on the embedded atom method. More-
over, the atomistic simulations include atomic displace-
ments perpendicular to �111� (edge component), which
even though small, they are important in kink formation
and in lowering �P .

45 We have employed the interatomic
potentials in Ref. [76] for pure Fe, and in Ref. [88] for the

Table IV. Polarization, p, of the screw dislocation core, defined in
Eq. (26), as a function of the number of solute AR, using the ab initio
IRP approach.

No. impurity atoms 0 1 2 3

p Cu 0.00 0.11 0.48 0.99
Cr 0.00 0.01 0.02 0.00
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(a) (b)

Fig. 14. DD map of the edge component of the dislocation core for
(a) pure Fe and (b) Fe–Cu using the atomistic simulations based on the
FS potential. The vectors have been magnified by a factor of 5 to make
them clearly visible.

Fe–Cu and for Cu–Cu interactions.The dimensions of the
supercell are 13×20×3 nm3, and the system consists of
approximately 64,800 atoms. Interestingly, the interatomic
potentials of Refs. [76, 88] give a non-polarized (sym-
metric) dislocation core for pure Fe and a fully-polarized
(asymmetric) core for the three AR Cu precipitate, both
in excellent agreement with our results using the IRP
approach. We find that the Cu nano-cluster enhances sub-
stantially the edge component of the dislocation, as shown
in Figure 14, suggesting that it may facilitate kink nucle-
ation, which is in agreement with experiment.91 However,
three-dimensional simulations, currently under study, are
necessary to confirm our conjecture of the Cu-induced
facilitation of kink formation in Cu nano-precipitates of
small diameters (<1 nm). The non-glide stress (Escaig
stress) is defined as the edge component of the diagonal
stress tensor interacting only with the edge component of
the dislocation displacement field.45	92 Consequently, since
the Cu nano-precipitate enhances the edge component, the
non-glide shear stress will have a larger effect on the core
structure and the cross-slip properties in Fe–Cu alloys, in
contrast to pure Fe.
Next, using the FS atomistic potentials we examine the

glide paths of the core for an applied pure glide shear
stress on the �110� plane in the �111� direction. We
increase the stress incrementally and relax the configura-
tion between each increment. �P for pure Fe is 1.2 GPa
and is well defined. Namely, below this critical stress the
dislocation is stable, and above it the core moves.
In sharp contrast, there are two critical stresses for the

Cu precipitate. The dislocation core structures for these
two critical stress values of 0.8 GPa and 1.5 GPa, are
shown in Figures 15(a) and (b), respectively. When the
applied stress reaches 0.8 GPa, the dislocation moves by
one atomic distance and exhibits a split core which is
metastable. This metastable configuration remains fixed
until the second upper critical stress of 1.5 GPa is reached,
above which the motion becomes unbounded, i.e., the Cu
cluster induces a stable → metastable → stable transi-
tion for the dislocation core under external stress. The IRP
approach for the Fe–Cu system gives similar results as

(a) (b)

Fig. 15. DD map of the screw dislocation core for Fe–Cu under pure
shear stress of (a) 0.8 GPa, and (b) 1.5 GPa, respectively by using EAM.
The atomic notation is the same as in Figure 13.

the atomistic simulations using the FS potential, but with
different values of the critical stresses, listed in Table V.
A similar behavior for the existence of two critical stresses
was found93 in pure Fe using the potential developed by
Simonelli et al.94 It is interesting to note that �P for pure
Fe lies between the upper and lower values of the critical
stress for the Cu precipitate, and the upper value agrees
with a recent estimate.83 This result indicates that the
nano-cluster cylindrical Cu precipitate strengthens �-Fe.
However, the strengthening mechanism is more complex,
involving a two-step change of the dislocation mobility,
with the Peierls stress of the second step being higher than
that of pure Fe.
There are several available FS interatomic potentials

for Fe–Cr.95–102 Here we use that developed by Olsson95

because of its compatibility with Ackland’s potential for
pure �-Fe.76 The result shows that the critical shear stress
to move the dislocation core on the {110} plane in the
Fe–Cr system is also well defined and unique, but with the
value of 2.0 GPa, which is 67% higher than that in pure
�-Fe. For comparison, we also list in Table V the result of
�P using the IRP method, which is consistent with the FS
calculation. Thus, our results indicate that the SSH effect
of Cr clusters is due to the fact that they serve as obstacles
for dislocation motion, due to the strong bonding of Cr
pairs or clusters, consistent with the interatomic results of
Wallenius et al.97

3.4. �-Precipitate Strengthening in
Nickel-Based Superalloys

One of the interesting applications is the strengthen-
ing caused by precipitation in nickel-based superalloys.

Table V. Values of critical stress (�P ) in GPa using the IRP methods
and the FS potential, respectively. The lower and upper values of �l

P and
�u
P for the Fe–Cu system are explained in the text.

Pure Fe Fe–Cu (�l
P ) Fe–Cu (�u

P ) Fe–Cr Pure Cr BCC Cu

IRP 1.6 1.3 1.9 1.8 2.1 1.8
FS 1.2 0.8 1.5 2.0 2.3 1.7
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These alloys have been extensively investigated, because
the L12-type long-range ordered intermetallic compounds,
such as Ni3Al, Ni3Si and Co3Ti, are considered for high-
temperature structural applications. Miller observed exten-
sive formation of spherical �-precipitates in the � ′ matrix
phase of a nickel-based superalloy using 3-D atom probe
measurements.103 Nemoto et al. measured the increase in
the yield strength of the alloy resulting from the formation
of �-precipitates, and provided a clear picture of the influ-
ence of �-precipitate strengthening on the inverse tempera-
ture dependence of the yield strength of the alloy.104 Thus,
understanding the role of �-precipitates on alloy strength,
and the detailed mechanisms involved during the inter-
action between a dislocation and �-precipitates is funda-
mental to the control and improvement of the mechanical
properties. Using the hybrid atomistic-continuum method
discussed earlier,23	105 the interaction between a super-
dislocation and a spherical �-precipitate embedded in a
� ′ matrix of a nickel-based superalloy was studied by
Takahashi et al.106 The focus of their study was on the
investigation of two main effects: (1) the influence of the
dislocation line flexibility, and (2) the effects of the dislo-
cation core structure on precipitation strengthening. In the
following, we show how the two methods are coupled to
study the interaction between dislocations and precipitates.

3.4.1. Dislocation-Precipitate Elastic Interaction

Consider an infinite elastic body D, with elastic constants
Cijkl, containing Np precipitates and Nd dislocations, sub-
jected to an external applied stress �0

ij . The mth precipitate,
�m, has elastic constants Cm

ijkl, and induces a coherency
strain �mkl. Following Mura,107 the stress in an infinite elas-
tic body can be written as

�0
ij +�ij =

{
Cijkl��

0
kl+�kl� in D−�

Cm
ijkl��

0
kl+�kl− �mkl� in �m

(27)

where, �kl = C−1
klij�

0
ij , and � is the total volume occupied

by Np precipitates. Since it is difficult to solve Eq. (27)
directly, the superposition principle will be utilized in its
solution

�0
ij +�ij = �̂ij + �̃ij (28)

where �̂ij is the stress in the elastic problem containing
dislocations with an external applied stress given by

�̂ij = Cijkl��
0
kl+ �̂kl� (29)

The last equation can be solved using the PDD method.
On the other hand, �̃ij is a correction stress to the infi-
nite medium solution, which should have an exact solu-
tion presented by Eq. (27), when combined with Eq. (29).
Therefore, �̃ij can be defined as

�̃ij =
{
Cijkl�̃kl in D−�

Cm
ijkl��̃kl− �mkl�+ �Cm

ijkl−Cijkl���
0
kl+ �̃kl� in �m

(30)

According to Eq. (30), the correction field can be obtained
from the solution of an inhomogeneous inclusion problem,
with an initial stress �Cm

ijkl−Cijkl���
0
kl+ �̃kl� in the precip-

itates. Takahashi and Ghoniem derived boundary and vol-
ume integral equations for such an inhomogeneity problem
(Eq. (30)), which were solved using the the BEM method
with a volume integral term. In the nickel-based superal-
loy �-precipitate case, the elastic constants of both � ′ and
�-phase are nearly the same, and thus the initial stress
can be assumed to be zero. Thus, Eq. (30) can be con-
verted from the inhomogeneous inclusion problem to an
inclusion problem. Additionally, if the shape of the pre-
cipitate is assumed to be an ellipsoid, the equation can
be solved using the Eshelby tensor instead of the BEM
method, which will drastically decrease the computational
effort.108

3.4.2. Elastic Field of Incoherent
Spherical �-Precipitates

Since experimental observations suggest that most
�-precipitates in Ni-based superalloys have spherical or
cuboidal shapes, we assume that the shape of the �-
precipitate is spherical, and utilize an analytical solution
to the elastic field generated by the �-precipitate.108 The
lattice constants of the �-precipitate and the � ′-phase are
a
�
0 = 0�352 nm and a

� ′
0 = 0�357 nm, respectively. This

small lattice constant mismatch introduces a coherency
strain ∈

∈= �a
�
0 −a

� ′
0 �/a

� ′
0 (31)

in the �-precipitate of −0.0143. When the position of
interest is inside the inclusion, the analytical solution to an
elastic problem of a spherical inclusion with a coherency
strain ∈ is given by

�r = �t =
1+�

3�1−��
∈ (32)

where � is Poisson’s ratio, and �r and �t are the strain in
the radial and tangential directions, respectively. On the
other hand, when the point of interest is outside the inclu-
sion, the strains are given by

�r =−2
3
1+�

1−�

a3

r3
∈

�t =
1
3
1+�

1−�

a3

r3
∈

(33)

where, a is the radius of the spherical inclusion, and r
is the distance between the center of inclusion and the
point of interest. The stress tensor at the point can then be
easily calculated using Hooke’s law, once the strain tensor
is available.
Figure 16 shows the simulation volume used in this

work. The matrix material of the simulation volume is the
� ′-phase, and the x, y and z axes are along the crystal ori-
entations �1̄01�, �111�, �1̄21̄�, respectively. A straight edge
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y:[111]

x:[101]

z:[121]

γ-Precipitate
   Eigen strain : -0.0143

Edge superdislocation
(Fractional dislocations : 20 lines)

L

γ ′ Matrix

Fig. 16. Schematic of simulation model for PDD simulations.

super-dislocation is introduced into the simulation volume.
The super-dislocation has a Burgers vector of a� ′

0 �1̄01�, and
is on the �111� slip plane, where a0 is the lattice constant
of the L12 ordered lattice nickel-aluminum (0.3571 nm).109

The core structure of the super-dislocation is represented
with 20 fractional dislocations. The GSFSs of the � ′-phase
and of the �-precipitate are calculated using the inter-
atomic potential developed for the nickel-aluminum binary
system.109 The lattice restoring stresses are then calculated
by taking the derivative of the GSFS, and are used as a
function of position of the fractional dislocations. When
a fractional dislocation is in the � ′-phase it experiences
the lattice restoring stress of the � ′-phase, whereas when
it is in the �-precipitate it experiences the lattice restor-
ing stress for of the �-precipitate. In reality, the GSFS
of the interface between the � and � ′-phase is generally
different from both the �-surface of the � and � ′-phases.
However, for simplicity, the unique shape of the �-surface
at the interface is ignored. A spherical �-precipitate with
a coherency strain of ∈ = −0�0143 is placed at the front
of the super-dislocation. Periodic boundary conditions are
applied in the z-direction, assuming that the dislocation is
infinitely long, yielding a 1-D periodic array of precipi-
tates in this direction. To move the dislocation, an external
shear stress, 
xy , is applied to the volume, and is con-
trolled to measure the CRSS for the interaction. The two
important parameters controlling the CRSS are the size of
the simulation volume along z, L, and the diameter of the
precipitate, D.
Figure 17(b) shows the calculated GSFS for the

� ′-phase, where an anti-phase boundary (APB) forms
behind a leading dislocation, and a trailing dislocation ter-
minates the APB. Thus, dislocations must move in pairs
in a super-dislocation configuration. In the present calcu-
lation of the GSFS for the � ′-phase, the maximum dis-
placement is 40�u, which is twice of that given to the
atomic volume in the GSFS calculation of the �-phase.
The two local maxima in the GSFS lead to the forma-
tion of an extended dislocation in the super-dislocation
core. Moreover, the two local minima at u = 0�42b and
1�0b, correspond to the complex stacking-fault between
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Fig. 17. Generalized stacking-fault surface energy for the � (a) and � ′

(b) phases.

the two partial dislocations of the extended dislocation,
and the APB between two super-partials of the super-
dislocation. The complex stacking-fault and APB ener-
gies are 202 mJ/m2 and 252 mJ/m2,109 compared to the
experimental values of 235 mJ/m2 and 175 mJ/m2,110

respectively.

3.4.3. �-Precipitate Strengthening

�-precipitate strengthening in nickel-based superalloys is a
result of several mechanisms that operate concurrently. Fol-
lowing Ardell,111 the chemical strengthening and modulus
hardening do not substantially affect the overall strength of
the alloy. Gerold and Haberkorn developed an analytical
solution to the increase in the CRSS as a result of coherency
interaction between a dislocation and a precipitate.112 To
obtain a closed form solution, they assumed that the dis-
location shape is straight, and that the dislocation core is
infinitely narrow (i.e., the displacement field has a discon-
tinuity at the line). Let us now consider an edge dislocation
on the x–y slip plane located at z0 and gliding in the x direc-
tion, together with a precipitate of radius R and a coherency
strain ∈. When the dislocation line is at a position �x	 z0�,
it suffers an interaction force K�x� from the precipitate,
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which can be calculated by integrating the Peach-Koehler
produced by the precipitate along the dislocation line (y
direction), and is given by

K�x� = b
∫ �

−�

xz�x	 y	 z0�dy =

8
3
1+�

1−�

Gb
 ∈ 
R3x0z0
�x2

0 + z20�
2

×
{
1− y0�2R

2+x2+ z20�

2R3

}
(34)

where

y20 =
{
R2− �x2+ z20� �x2+ z20 < R2�

0 �x2+ z20 ≥ R2�

The CRSS can be calculated from the maximum interac-
tion force


crss =
K�x�
max

bL
(35)

In order to investigate the influence of coherency
strengthening alone, we use the GSFS for the � ′-phase for
both the matrix and precipitate. The diameter of the �-
precipitate is fixed to 8 nm, and the position of the slip
plane is 3 nm above (below) the precipitate’s mid-plane,
corresponding to the precipitate being in the compression
(tension) side of the dislocation, shown in Figures 18(a
and b). The size of the simulation volume is taken as
50×50×20 nm3. Figure 18 shows successive snap-shots
of the dislocation geometry during its interaction with the
�-precipitate. Note that each line represents a constant dis-
placement contour within the dislocation core, with val-
ues in the range (0,b). The fractional dislocations (each
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Fig. 18. Snapshots of the dislocation core structure during the interaction between a super-dislocation and a �-precipitate accounting only for
precipitate coherency strain. (a) Slip plane position: 3 nm above the precipitate’s mid-plane. (b) Slip plane position: 3 nm below the precipitate’s
mid-plane

representing a constant displacement contour) cluster into
four groups, corresponding to the leading and trailing par-
tials of the super-partials of the super-dislocation, respec-
tively. In Figure 18(a), where the slip plane is 3 nm
above the mid-plane, the central part of the dislocation
is immobilized by the coherency strain at the front of
the precipitate. In this case, most of the precipitate is
on the compression side of the super-dislocation, and
the precipitate has a negative coherency strain. Therefore,
the super-dislocation and the precipitate have a repulsive
interaction force. Upon increasing the applied shear stress,
the leading super-partial starts to cut through the precipi-
tate. Once the dislocation moves inside the precipitate, it
is strongly pushed to the outside of the precipitate by the
interaction. After breaking away from the precipitate, the
super-dislocation is still influenced by a repulsive inter-
action force that enhances its glide. On the other hand,
as shown in Figure 18(b), the central part of the super-
dislocation spontaneously dissociates inside the precipi-
tate, because most of the precipitate is on the tension side
of the dislocation and the precipitate has an attractive inter-
action force with the super-dislocation. Thus, the super-
dislocation tends to stay inside the precipitate so that the
maximum interaction appears at the center of the precipi-
tate. When the applied shear stress reaches the CRSS, the
dislocation can finally cut through the precipitate.
These results will now be utilized to extend the applica-

bility of Eq. (35) by incorporating the influence of the core
structure of dislocations as they interact with the precipi-
tates. We decompose here the super-dislocation into four
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Fig. 19. Increase in CRSS as a function of the slip plane position as
a result of the coherency strengthening by the precipitate strain field,
calculated by direct numerical simulations, and compared to the results
of Gerold and the proposed analytical model.

partial dislocations Di, where the positions of each partial
dislocation xi is assumed to be x2 = x1+wc, x3 = x2+wa

and x4 = x3+wc, where wc and wa are the widths of the
complex stacking-fault between two partial dislocations of
a super-partial dislocation, and the anti-phase boundary
between the super-partial dislocations. For simplicity, we
consider an infinitely long straight edge super-dislocation
in an infinite isotropic elastic body, and include the elas-
tic interaction between the partial dislocations as well as
the energy of the complex stacking-fault and anti-phase
boundaries. The widths wc and wa can be calculated by
solving the following equilibrium equations,

Gbe2

2��1−��

(
1
wc

+ 1
wc +wa

+ 1
2wc +wa

)

+ Gbs2

2�

(
− 1
wc

+ 1
wc +wa

− 1
2wc +wa

)
= �c (36)

Gbe2

2��1−��

(
− 1
wc

+ 1
wa

+ 1
wc +wa

)

+ Gbs2

2�

(
1
wc

− 1
wa

+ 1
wc +wa

)
= �a−�c (37)

In analogy with Eq. (35), the CRSS corresponds to the
maximum value of the sum of the K�xi�, (i = 1–4),
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Z

Fig. 20. Snapshots of the interaction between a super-dislocation and a 16 nm-�-precipitate as a result of differences in the stacking fault between
the matrix and precipitate (stacking fault strengthening).

namely,


crss =
∑4

i K�xi�
max

bL
(38)

Figure 19 shows the results of the PDD with the GPN
model simulation, which are compared to calculations
based on Eq. (35) as well as Eq. (38). The increase in CRSS
calculated by Eq. (38) is considerably smaller than those
calculated by Eq. (35), which is in excellent agreement with
the numerical simulation results. Thus, it is clear that the
influence of the core structure of dislocations on coherency
strengthening is very significant (the maximum is lowered
by a factor of almost three), and that the influence can be
accurately accounted for using the proposed Eq. (38).
If the energy of the stacking fault between two par-

tial dislocations is larger inside the precipitate than in
the matrix, an additional shear stress must be applied on
the dislocation to overcome that energy difference, ��,
and allow the dislocation to cut through the precipitate.
Nembach derived an analytical expression to calculate the
required shear stress due to stacking-fault strengthening.113

An extended dislocation, composed of two partial disloca-
tions and a stacking-fault in-between were considered, and
the length of each partial dislocations inside the precipi-
tate, L�x� was used to find the interaction force between
the precipitate and the dislocation K

K�x�= �L�x�−L�x+w���� (39)

where, L�x� and L�x+w� are the lengths of the leading
and trailing partial dislocations, at x and x+w, inside the
precipitate, respectively. The CRSS can be calculated by
finding the maximum interaction force, given by:113


crss =
K�x�
max

bL
(40)

To determine the accuracy of the analytical solution of
Nembach, and the effect of the exact core structure on the
stacking fault strengthening, we have performed numeri-
cal simulations where the influence of the coherency strain
is removed by setting ∈= 0. The simulation volume used
here is identical to that used in the previous section, and
the diameter of the precipitate is changed in the range
from 2 to 30 nm. The slip plane position of the super-
dislocation is fixed at the center of the precipitate. Figure 20

J. Comput. Theor. Nanosci. 7, 1–30, 2010 21



R
E
V
IE
W

Modeling of Dislocation Interaction with Solutes, Nano-Precipitates and Interfaces: A Multiscale Challenge Kioussis and Ghoniem

shows snapshots of the dislocation configuration as it inter-
acts with a 16 nm-precipitate. It is clear that the super-
dislocation and the precipitate are attracted to one another,
and that the super-dislocation is first absorbed by the pre-
cipitate. When the dislocation enters the �-precipitate, the
anti-phase boundary disappears, and the complex stacking
fault is changed to an intrinsic stacking-fault, which has
a lower energy than the complex stacking-fault. Thus, the
super-dislocation tends to be attracted inside the precipi-
tate to reduce the interaction energy. Increasing the external
shear stress, the dislocation gradually starts to bow-out, and
finally breaks away from the precipitate when the applied
shear stress reaches its CRSS value.
Figure 21 shows the results of the numerical simulations

using the full PDD-GPN model and the rigid PDD-GPN
model. Also, the results of Eq. (40) are plotted for com-
parison. The CRSS increases as the precipitate diameter
increases, which is a consequence of an increase in the
stacking fault area between the partials entering the pre-
cipitate. The results of all numerical simulations with both
methods and those of Eq. (40) are within a few percent.
Therefore, Eq. (40) reasonably accounts for the stacking
fault strengthening, as long as the dislocation core can be
described by two isolated peaks of displacement distribu-
tions (i.e., well-isolated partials). This clearly demonstrates
that the core structure of the dislocations is an important
factor in determining the CRSS, and that Eq. (40) can be
used in cases where the two partial dislocations are well-
isolated.
Following the work of Takahashi and Ghoniem,106 we

describe here the �-precipitate strengthening as a combina-
tion of stacking-fault and coherency strengthening effects,
and propose a method to evaluate the overall CRSS increase
when the two mechanisms operate simultaneously. The
simulation volume and boundary conditions used here are
the same as those used in previous simulations, while the
diameter of the �-precipitate is fixed to 8 nm. Figure 22
shows the dependence of the CRSS on the location of
the slip plane. As can be seen, in the stacking-fault
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Fig. 21. Dependence of the CRSS on precipitate diameter for the
stacking-fault strengthening mechanism alone.

strengthening mechanism, the distribution of CRSS is sym-
metric about the precipitate center, exhibiting a maximum
at the center. When the position of the slip plane is outside
the precipitate, there is no increase in CRSS, as expected.
It is clear that the CRSS outside the precipitate is identical
to that due to the coherency strain mechanism, while inside
the precipitate both the coherency and stacking fault mech-
anisms operate simultaneously. In fact, as the slip plane
gets closer to the precipitate mid-plane, the influence of
coherency strain diminishes, while stacking fault strength-
ening reaches its maximum. However, the distribution of
the CRSS when the two mechanisms operate simultane-
ously (mixed strengthening) has a complex structure as a
function of the slip plane position, and its maximum can-
not be simply the sum of the two independent maxima for
each mechanism separately; a procedure that is common
in precipitation hardening estimates. To further demon-
strate this point, we have also used a simple summation
rule for the CRSS resulting from the stacking-fault and the
coherency strengthening mechanisms, and plotted the result
in Figure 22 (dashed line). Here, the simple sum does not
represent overall precipitate hardening very well. When the
dislocation is on the compression side of the precipitate,
the stacking fault shrinks, while it widens when it is on the
tension side, giving rise to the asymmetric distribution of
the CRSS as a function of the slip plane position, when
the two mechanisms operate simultaneously; a result that
cannot be predicted by simple addition of the two effects.
Using Eqs. (38) and (40), the interaction forces between

the super-dislocation and the precipitate are plotted in
Figure 23 as a function of dislocation position from the
precipitate center, when the slip plane is at −2.0 nm
below the precipitate’s mid-plane. It is observed that the
peaks of the interaction force due to the stacking-fault and
the coherency mechanisms appear at different positions,
suggesting that the summation of the CRSS (which is
equivalent to summing the maximum forces) is not a
good way to represent the true spatial dependence of the
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Fig. 23. Dependence of the coherency and stacking fault interaction
forces on the dislocation position, when it lies on a slip plane at −2 nm
below the precipitate’s mid-plane.

CRSS for the mixed strengthening. The figure also shows
the total interaction force due to the stacking-fault and
coherency strengthening mechanisms as a function of dis-
location position. Since the dislocation has to overcome
the maximum total interaction force, we have calculated
the CRSS at different slip planes using only the maxi-
mum interaction force. In Figure 24 we compare the CRSS
as a function of the slip plane position, using the full
PDD-GPN model, and comparing it to the more simplified
model of using only the maximum value of the calculated
shear stress at each slip plane. These two methods show
excellent agreement, indicating that, in order to calculate
the CRSS for mixed strengthening, the maximum inter-
action force for a given slip plane can be first computed
and stored, and then used in subsequent DD simulations
without having to perform detailed simulations.

3.5. Dislocation Transmission Across Cu/Ni Interface

The influence of interfaces on the mechanical properties of
multiphase and polycrystalline materials is ubiquitous. It
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Fig. 24. Comparison of the CRSS using the full PDD-GPN model with
the analytical model as a function of slip plane position.

has been found experimentally that the hardness and ulti-
mate tensile strength of nano-layered structures increases
with decreasing bilayer thickness, in a relation analogous
to the Hall-Petch behavior to some critical layer thick-
ness. At smaller wavelengths, the hardness is seen to
increase more rapidly, with Hall-Petch exponents of the
order of unity or greater, to some peak stress value that is
much greater than that attainable by traditional microstruc-
tures. Thus, multilayers composed of alternating layers
made of metals such as Cu, Ni, Cr and Nb exhibit peak
strengths on the order of few GPa at layer thickness of few
nanometers114	115 compared to the yield strength values of
few tens of MPa in bulk Cu, Ni, Cr and Nb.
A pronounced size effect has been observed in thin

multilayers systems as different deformation mechanisms
operate at different length scales. While the behavior of
multilayers can be described by scaling law in the submi-
cron length scale, deviation from this scaling law occurs
at the nanoscale, and the effect of discrete or even sin-
gle dislocation strengthening mechanism applies.19 At the
nanoscale, the strengthening mechanisms fall into sev-
eral broad categories. The first mechanism is the classic
Hall-Petch model of dislocation pileups.17	18	116 The sec-
ond mechanism was introduced by Koehler,117 where the
image forces imposed by the layers of alternating materi-
als restrict the motion of dislocations.118 The dislocations
are attracted toward (repelled from) the interface by the
decrease (increase) in line energy as a dislocation moves
toward the material with lower (higher) elastic constants.
Another deformation mechanism involves the formation
and propagation of the so-called “Orowan” bows within
the layer.119

3.5.1. Generalized Stacking Fault Energy Surface

The Cu/Ni bi-material system is modeled as two semi-
infinite homogenous and isotropic regions connected at the
interface as shown in Figure 4(c). The glide planes of
Cu and Ni are assumed to be coplanar and normal to the
interface. A pure screw dislocation of Burgers vector is
placed in Cu (soft material) gliding on the (111) plane. The
electronic structure calculations of the GSFS were carried
out using the projector augmented-wave (PAW) method120

as implemented in the VASP code.47	121 The ab initio-
determined GSFS projected along the121 direction for the
pure Cu and Ni and along the �001� direction for the Cu/Ni
interface are shown in Figure 25. The first energy maxi-
mum encountered along the121 direction for the Cu and Ni
is the unstable stacking fault energy, �uns, which represents
the lowest energy barrier to nucleate a dislocation from
a crack tip at 0 K. At finite temperatures, the effective
energy barrier for dislocation nucleation will be reduced
by both thermal excitations and the fact that dislocation
nucleus may take a three-dimensional shape. The local
minimum on the other hand, corresponds to the intrinsic
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Fig. 25. Ab initio generalized stacking fault energy for Ni and Cu along
the [112] direction and for the Cu–Ni interface along the [100] direction.

stacking fault energies, �ins. The calculated values of �uns

are 225 mJ/m2 and 350 mJ/m2 for Cu and Ni, respectively,
while the values of �int for Cu and Ni are 53 mJ/m2 and
163 mJ/m2, respectively. These values are in good agree-
ment with other calculations.122 As expected, the GSFS
of the interface is symmetric along the110 direction and it
has unstable stacking fault energy of 730 mJ/m2, which is
much higher than the corresponding value of Ni and Cu.
The absence of a saddle point in the GSFS of the interfaces
suggests that the full dislocation on the interface does not
dissociate. The shear modulus, Burgers vectors, and the
values for the various stacking fault energies for Ni and
Cu are listed in Table VI.

3.5.2. Displacement and Density Profiles

The large increase in the mechanical strength of nano-
layered materials is widely attributed to the presence of
interfaces. Several factors can affect the mechanical and
physical properties of the interface such as: the unstable
stacking fault energy of the interface, �int, which is a mea-
sure of the propensity of interfacial sliding and which is
directly related to the electron charge bonding across the
interface, the presence of misfit dislocations, and the pres-
ence of impurities. The smaller �int is, the easier is for the
interface to slide, thus allowing the dislocation to spread
onto the interface.

Table VI. Values of the shear modulus, �, the Burgers vector b, the
intrinsic and unstable stacking fault energies, �int and �uns, and the drag
coefficient, B in the dislocation dynamics, for Ni and Cu, respectively.

� b �int �uns B

Material (GPa) (Å) (mJ/m2) (mJ/m2) (Ns/m)

Ni 80 2.5 163 225 104

Cu 50 2.6 53 350 104

Figure 26 shows the equilibrium edge and screw dis-
placement and the corresponding Burgers vector density
��x� of the dislocation for three values of applied stress.
The edge and screw Burgers vector density are defined by
�e = due�x�/dx and �s = dus�x�/dx. The screw disloca-
tion, originally placed in the soft material (x > 0) is pushed
towards the Cu/Ni interface. For relatively low values of
applied stress (around 2.0 GPa), the dislocation core in
Cu dissociates into two partials bounding a stacking fault
with a separation distance of about 7b, as shown in the
top panel of Figure 26. As the external stress increases, the
dislocation approaches the interface but remains dissoci-
ated. However, the dislocation core structure has changed
significantly. First, the dislocation Burgers vector density
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Fig. 26. Displacement, u�x�, and density, ��x�, profiles on the glide
plane for the edge and screw components, respectively, as it moves from
Cu towards Ni. The GSFS of the interface is equal to the ab initio value
(�int = �ab

int ). The profiles show the equilibrium positions of the dislo-
cation at (2.0 GPa (top panel), 2.8 GPa (middle panel) and 3.30 GPa
(bottom panel). The continuous lines represent the screw or the edge dis-
placements, respectively, and the dotted lines represent the corresponding
densities.
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accumulates on the leading partial at the expense of the
trailing partial, as shown in the middle and bottom panels
of Figure 26, respectively. Second, the dislocation core con-
stricts steadily and there is a significant overlap between the
two partials (bottom panel of Fig. 26). Note, that the max-
imum value of the screw component of the displacement
in Cu is 2.35 Å, while the Burgers vector of Cu is 2.6 Å.
This reduction of Burgers vector is a result of the energet-
ically favorable spreading of the core onto the interface.
Our results suggest that the dislocation spreading process
proceeds via the following mechanism: When the leading
fractional dislocation reaches the vicinity of the interface it
spreads on it, if it is energetically favorable. As the external
stress is increased, the trailing fractional dislocations fol-
low and spread onto the interface. The spreading process
continues until the interface can no longer accommodate
additional slip. At the critical value of the applied stress,
once the leading dislocation on the glide plane overcomes
the interfacial barrier and is transmitted to the Ni crystal,
the remaining fractional dislocations follow.
In Figure 27 we show the snapshots of the Burgers

vector density profiles �e�x� and �s�x� of the dislocation
under the critical stress value of 3.35 GPa. At the initial
stage of the transmission process, most of the fractional
dislocations are localized in the vicinity of the interface
in the Cu host (Fig. 27(a)). As the fractional dislocations
relax, they get transmitted through the interface towards
the Ni host till all of them pass. Note, that after the dis-
location has been transmitted, the density profile exhibits
the formation of two partials with a separation distance
of about 6b (Fig. 27(b)). The peak in the density profile
at x = 0 indicates the formation of a ledge on the inter-
face, in agreement with MD simulations for edge or mixed
dislocations for the Cu/Ni interface.55

–
–

–

–

Fig. 27. Dynamic evolution of the dislocation density of the edge and
screw components along the glide direction during the transmission pro-
cess under the critical stress of 3.35 GPa. Positive (negative) position
denotes the Cu (Ni) matrix.

3.5.3. Effect of Unstable Stacking
Fault of the Interface

Interfaces can be coherent, semi-coherent or fully non-
coherent. In the case of fully non-coherent structures, dis-
location motion is restricted to individual layer,118 i.e., the
interface acts as a dislocation sink. For a semi-coherent
interface as in the case of Cu/Ni, the dislocation trans-
mission across the interface is possible depending on
the stacking fault energy of the interface. In order to
explore the effect of interfacial sliding on the critical stress
required for dislocation transmission, we have varied the
value of �int with respect to its ab initio value �ab

int =
730 mJ/m2.
Figure 28 displays the dislocation displacement profiles

for the screw component on the glide plane, us�x�, and on
the interface plane, us�y�, for different values of the ratio,
�int/�

ab
int , of 1.2 (hard interface), 1.0, and 0.8 (soft inter-

face). In each panel we show also the results for the dis-
placement profiles for various applied stress. As expected,
as the interfacial energy barrier for sliding is reduced
and the interface becomes less bonded, the percentage of
the dislocation spreading on the interface increases from
about 13% for �int = 1�2�ab

int to 30% for �int = 0�8�ab
int .

The spreading of fractional dislocations on the interface
imposes an extra energy barrier on the transmission of the
glide dislocations. The extra barrier is due to the repul-
sive elastic interactions between the glide and interfacial
fractional dislocations and the formation of the interfacial
ledge which hinders the transmission process from Cu to
Ni. Consequently, the critical value of applied stress for
dislocation transmission increases (decreases) to the value
of 4.2 GPa (3.2 GPa) as the interfacial GSFS decreases
(increases) compared to its corresponding ab initio value.
The ledge formation is partially due to the accommodation
of the misfit in Burgers vector between Cu and Ni which
is about 0.10 Å. A closer examination of Figure 27(b)
however, shows that the screw displacement profile as the
dislocation transmits from Cu to Ni has a step at the inter-
face whose height is 0.25 Å, which is larger than the lattice
constant mismatch of 0.1 Å.

3.5.4. Effect of Dislocation Splitting

Previous PN-based simulations63–65 did not take into con-
sideration the development of the edge component of a
pure screw dislocation upon dissociation. This possibility
results in dislocation splitting into a partial with mixed
Burgers vectors, with an overall reduction of the energy, as
compared to dissociation along screw components alone,
which renders the dislocation with higher misfit energy. In
order to explore the effect of the dislocation splitting on
the spreading process, we have carried out several simula-
tions in which we disallow the dislocation to split by con-
sidering the screw displacement only (i.e., removing the
edge component associated with each screw dislocation).
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–

–

– – – –

– –

– – –

Fig. 28. Equilibrium displacement profiles of the screw component
along the glide direction, us�x�, and on the interface plane, us�y�, for
different values of �int/�

ab
int of (a) 0.8 (top panel), (b) 1.0 (middle panel)

and (c) 1.2 (bottom panel), respectively. The solid, dashed, and dotted
curves correspond to different values of applied stress.

The results are then compared with our previous results in
Figures 26–28, where the edge component was taken into
account explicitly.
Figure 29 shows the screw displacement, us�x�, and

density, �s�x�, profiles on the glide plane, and the screw
displacement, us�y�, on the interfacial plane with and with-
out the edge components. The removal of the edge compo-
nents changes the dislocation core structure considerably.
First, the dislocation core does not dissociate. Second,
the dislocation core becomes much narrower, as reflected
on the dramatic increase in the magnitude of the Burg-
ers vector density. Finally, more dislocation core spreading
onto the interface takes place, which in turns leads to a

– – –

Fig. 29. Displacement, us�x�, and density, �s�x�, profiles of the screw
component on the glide plane and screw displacement, us�y�, on the inter-
facial plane for a screw dislocation with and without the associated edge
component. The critical stress, 
crit , for transmission is 6.80 (3.35) GPa
without (with) the edge component.

significant increase in the transmission stress. By removing
the edge components, the critical stress is doubled com-
pared to the case where the edge component is taken into
account explicitly. These results suggest that a constricted
dislocation core can spread onto the interface much easier,
which is analogous to the cross slip mechanism.60

3.5.5. Effect of Preexisting Misfit Dislocations

Interfacial misfit dislocations, interacting with the applied
stress and incoming glide dislocations can be a potent bar-
rier to slip transmission.54 In this section we explore the
effect of pre-existing misfit dislocations on the dislocation
core properties and on the transmission stress. Two sim-
ulations were carried out in the absence or presence of
preexisting misfit dislocation.
In the absence of a misfit dislocation, initially, the inter-

face has zero displacement content and a single dislocation
is placed on the slip plane having a maximum displace-
ment of 2.6 Å. After the dislocation transmits from Cu to
Ni as shown in Figure 30, it leaves part of its displacement
on the interface. Therefore, the original displacement on
the glide plane is reduced from 2.6 Å to 2.35 Å, whereas
that on the interface is increased from 0 to 0.25 Å.
In the presence of a preexisting misfit dislocation, ini-

tially, we consider both a glide and a misfit dislocation on
the slip and interfacial planes, respectively. The maximum
displacement contents on both the glide and interface plane
are equal to 2.6 Å. The fractional dislocations on the inter-
face are allowed to interact with the glide fractional dislo-
cations, where the glide fractional dislocations are allowed
to spread on the interfacial plane and vice versa. After
the dislocation transmission, as shown in Figure 30, the
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– –

Fig. 30. Effect of pre-existing misfit interfacial dislocation on the dis-
placement profiles of a screw dislocation in the presence and absence of
pre-existing misfit dislocation. The displacement, us�x�, (us�y�) profile
on the glide (interfacial) plane “after dislocation transmission” are shown
on the top (bottom) panel.

displacement content on the glide and interfacial planes
do not change from their initial values, indicating that the
presence of a preexisting dislocation prevents any spread-
ing from or to the glide plane.
The screw displacement, us�x� (us�y�) profile on the

glide (interfacial) plane, after the dislocation transmission,
are shown in the top (bottom) panel of Figure 30, in
the absence or presence of misfit interfacial dislocation.
The results indicate that the transmission stress increases

Fig. 31. Variation of critical shear stress with �int/�
ab
int of the interface.

Rigid interface does not accommodate core spreading and therefore it is
not affected by the change in the interfacial GSFS. The removal of the
edge component leads to a significant increase in the transmission stress
for the slipping interface case and minor increase for the rigid interface
case.

dramatically compared to its corresponding value in the
absence of the misfit dislocation. Note, that there is no
ledge formation on the interface when the misfit disloca-
tion is present.
Figure 31 shows the critical transmission stress versus

the ratio of �int with respect to its ab initio value for the
cases of a non-slipping (rigid) and a slipping interface,
with and without the edge component taken into account.
The number in parenthesis indicates the percentage dis-
location content on the interface for the case of slipping
interface with the edge component taken into account. As
expected, the critical transmission stress is independent of
�int for the case of a rigid interface, and its value is higher
than the corresponding value when the edge component
is neglected in the simulations. For the case of a slipping
interface, i.e., when �int < �ab

int , the interface allows more
dislocation content to spread from the glide plane to the
interface. This in turn leads to a dramatic increase in the
critical stress for transmission. For example, the critical
stress is increased by a factor of three for �int = 0�60�ab

int ,
compared to the corresponding value at �int = �ab

int . On the
other hand, when �int > �ab

int , the GSFS of the interface
increases, the interfacial slipping becomes more difficult
and the critical stress decreases more slowly saturating to a
value of about 2.8 GPa. Thus, these results clearly demon-
strate that the increase of transmission stress is directly
related to the spreading process on the interface. Note,
that the percentage of dislocation content on the interface
increases from about 10% for �int = 1�5�ab

int to 98% when
�int = 0�60�ab

int . A similar trend of the critical transmis-
sion stress as a function of the interfacial energy barrier is
also found for the case of slipping interface without tak-
ing into account the edge components (plain circles), but
with higher values of critical stress. Our calculations show
for the first time that the removal of the edge components
results in dramatically different values for the transmission
stress compared to those if the dissociation is included.

4. CONCLUSIONS

In conclusion, we have presented an improved coupling
scheme for the original multiscale modeling approach of
Choly et al. which concurrently couples DFT-based quan-
tum mechanical calculations with empirical EAM sim-
ulations for metals. Within this scheme, the force on
the DFT/EAM boundary atoms is determined from the
EAM bulk calculations rather than from the combined
DFT/EAM cluster calculations proposed in the original
approach. In this way, the fictitious surface effects on
the inner DFT atoms have been largely removed. The
improved scheme reduces the coupling errors on the
boundary DFT atoms and the EAM atoms by more than
one order of magnitude for bulk Al, compared with the
original approach. We have applied the improved method
to study the core properties of an edge dislocation in Al
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and have demonstrated that this approach yields a core
structure and �P for Ta in excellent agreement with the
FP-GFBC method.37 We show that the local environment
of W solutes in bcc Ta has a dramatic effect on both
the dislocation mobility and slip paths: Isolated W solutes
enhance the dislocation mobility, W nanoclusters of trian-
gular shape pin the dislocation, while those of hexagonal
shape result in spontaneous dislocation glide. Thus, the
local chemistry plays a key role on the energy landscape
of the PPS.
Using an ab initio-based approach of Suzuki’s inter row

potential, we find that Cu clusters change dramatically the
core structure of a screw dislocation from non-polarized
in pure Fe to polarized. These results are corroborated by
atomistic simulations indicating that Cu facilitates the core
planarity and enhances substantially the edge component.
The core path under pure glide shear stress exhibits a sta-
ble → metastable → stable transition. The Peierls stress
for pure Fe lies between the upper and lower values of
the critical stress for the Cu precipitate. In sharp contrast,
Cr solute clusters, do not change the core polarization and
increase �P , thus hardening Fe. The underlying atomic ori-
gin responsible for the unusual lubricant effect of Cu lies
on the reduction of the Fe–Cu and Cu–Cu AR interactions
which are dominated by the weak t2g-s hybridization. On
the other hand, the Fe–Cr and Cr–Cr AR interactions are
dominated by the much stronger t2g–t2g hybridization.

Using four different interaction models (the PDD, rigid
PDD, PDD with GPN, and rigid PDD with GPN), we find
that the influence of dislocation line flexibility is negligibly
small, whereas the dislocation core structure has a major
role in determining the CRSS. An analytical equation for
coherency strengthening was revised to incorporate the
dislocation core information into the evaluation of the
CRSS, reproducing very well the results of detailed PDD
simulations with the GPN model. The influence of the
dislocation line flexibility on the stacking-fault strength-
ening was found to be negligible. Finally, an analytical
equation, which was derived with a dislocation model
composed of two partial dislocations and a stacking-fault
in-between, precisely reproduced the CRSS of the
stacking-fault strengthening mechanism.
Finally, we have developed a hybrid approach to study

the dislocation transmission/spreading in both coherent and
semi-coherent Cu/Ni bimaterial. This approach combines
the parametric dislocation dynamics based of the PN frame-
work with ab initio-determined GSFS. The model takes
into account all three components of atomic displacements
of the dislocation and utilizes the entire GSFS to reveal
outstanding features of dislocation dissociation. The effects
of the mismatch in the elastic properties, gamma surfaces,
and misfit dislocations on the spreading of the disloca-
tion at the interface and on the transmission across the
interface are accounted for. We are able to reproduce sev-
eral MD simulations trends and make further predictions

about the strength of Cu/Ni laminates, without the reliance
on empirical potentials. Our calculations show that the
dislocation dissociates into partials in both Cu and Ni.
The dislocation core is squeezed near the interface facil-
itating the spreading process, and leaving an interfacial
ledge during the transmission process. The dependence of
the critical transmission stress on the dislocation spread-
ing/transmission is examined. The competition of disloca-
tion spreading and transmission depends on the GSFS of
the interface. It is found that the decrease of the interfacial
GSFS enhances core spreading which in turn increases the
transmission stress. Moreover, it is found that the strength
the bimaterial can be significantly enhanced by the pres-
ence of pre-existing misfit dislocations. In contrast to other
available PN models, it is shown that the presence of all
three atomic displacements of dislocation has significant
effect of the transmission stress.
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79. G. Wang, A. Strachan, T. Çağin, and W. A. Goddard, Phys. Rev. B

67, 140101 (2003).
80. L. Yang, P. Söderlind, and J. A. Moriarty, Philos. Mag. A 81, 1355

(2001).
81. K. Edagawa, T. Suzuki, and S. Takeuchi, Phys. Rev. B 55, 6180

(1997).
82. Z. Z. Chen, N. Kioussis, N. Ghoniem, and T. Hasebe, Phys. Rev. B

77, 014103 (2008).
83. T. Harry and D. J. Bacon, Acta Mater. 50, 209 (2002).
84. J. Marian, B. D. Wirth, R. Schaublin, G. R. Odette, and J. M.

Perlado, J. Nucl. Mater. 323, 181 (2003).
85. H. Suzuki, Dislocations in Solids, edited by F. R. N. Nabarro, North

Holland, Amsterdam (1979), Vol. 4, p. 193.
86. S. L. Frederiksen and K. W. Jacobsen, Philos. Mag. A 83, 365

(2003).
87. C. Domain and G. Monnet, Phys. Rev. Lett. 95, 215506 (2005).
88. G. J. Ackland, D. J. Bacon, A. F. Calder, and T. Harry, Philos.

Mag. A 75, 713 (1997).
89. K. Tapasa, D. J. Bacon, and Y. N. Osetsky, Modell. Simul. Mater.

Sci. Eng. 14, 1153 (2006).
90. V. Vitek, Cryst. Lattice Defects 5, 1 (1974).
91. S. K. Lahiri and M. E. Fine, Metall. Trans. 1, 1495 (1970).
92. V. Vitek, M. Mrovec, and J. L. Bassani, Mater. Sci. Eng. A 365, 31

(2004).

J. Comput. Theor. Nanosci. 7, 1–30, 2010 29



R
E
V
IE
W

Modeling of Dislocation Interaction with Solutes, Nano-Precipitates and Interfaces: A Multiscale Challenge Kioussis and Ghoniem

93. J. Chaussidon, M. Fivel, and D. Rodney, Acta Mater. 54, 3407
(2006).

94. G. Simonelli, R. Pasianot, and E. Savino, Mater. Res. Soc. Symp.
Proc. 291, 567 (1993).

95. P. Olsson, J. Wallenius, C. Domain, K. Nordlund, and L. Malerba,
Phys. Rev. B 72, 214119 (2005).

96. D. Farkas, C. G. Schon, M. S. F. D. Lima, and H. Goldenstein,
Acta. Mater. 44, 409 (1996).

97. J. Wallenius, P. Olsson, C. Lagerstedt, N. Sandberg, R. Chakarova,
and V. Pontikis, Phys. Rev. B 69, 094103 (2004).

98. J. Shim, Y. Cho, S. Kwon, W. Kim, and B. Wirth, App. Phys. Lett.
90, 021906 (2007).

99. A. Caro, D. A. Crowson, and M. Caro, Phys. Rev. Lett. 95, 075702
(2005).

100. M. Y. Lavrentiev, R. Drautz, D. Nguyen-Manh, T. Klaver, and
S. Dudarev, Phys. Rev. B 75, 014208.

101. J. H. Shim, H. J. Lee, and B. D. Wirth, J. Nucl. Mater. 351, 56
(2007).

102. N. Juslin, K. Nordlund, J. Wallenius, and L. Malerba, Nucl. Instr.
Meth. 255, 75 (2007).

103. M. Miller, Micron 32, 757 (2001).
104. M. Nemoto, W. H. Tian, K. Harada, C. S. Han, and T. Sano, Mater.

Sci. Eng., A 152, 247 (1992).
105. A. Takahashi and N. M. Ghoniem, Journal of the Mechanics and

Physics of Solids 56, 15341553 (2008).

106. A. Takahashi, M. Kawanab, and N. M. Ghoniem, Phil. Mag. (2009),
In press.

107. T. Mura, Micromechanics of Defects in Solids, Martinus Nijhoff,
Dordrecht (1982).

108. J. D. Eshelby, Proc. Roy. Soc. A 241, 376 (1957).
109. Y. Mishin, Acta Mater. 52, 1451 (2004).
110. H. P. Karnthaler, E. T. Muhlbacher, and C. Rentenberger, Acta

Mater. 44, 547 (1996).
111. A. J. Ardell, Metall. Trans. A 16, 2131 (1985).
112. V. Gerold and H. Haberkorn, Phys. Status Solidi 16, 675 (1996).
113. E. Nembach, Scripta Mettalurgica 20, 763 (1986).
114. A. Misra and H. Kung, Adv. Eng. Mater. 3, 217 (2001).
115. B. M. Clemens, K. Kumg, and S. A. Barnett, MRS Bulletin 24, 20

(1999).
116. P. M. Anderson and C. Li, Nanostruct. Mater. 5, 349 (1995).
117. J. Koehler, Phys. Rev. B 2, 54 (1970).
118. T. Foecke and D. vanHeerden, Chemistry and Physics of Nano-

structures and Related Non-Equilibrium Materials, edited by E. Ma,
B. Fultz, R. Shull, J. Morral, and P. Nash, TMS, Pittsburgh (1997),
p. 193.

119. P. M. Anderson, T. Foecke, and P. M. Hazzeldine, MRS Bulletin
24, 27 (1999).

120. G. Kresse and J. Joubert, Phys. Rev. B 59, 1758 (1999).
121. G. Kresse and J. Hafner, Phys. Rev. B 47, 588 (1993).
122. N. Bernstein and E. B. Tadmor, Phys. Rev. B 69, 094116 (2004).

Received: 8 August 2009. Accepted: 20 September 2009.

30 J. Comput. Theor. Nanosci. 7, 1–30, 2010


