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Abstract

An overview of theoretical and computational methods in the rapidly advancing field of Nanome-
chanics and Micromechanics of materials is given. This overview emphasizes the Multiscale Mod-
elling of Materials (MMM) approach, which relies on a reduction of the degrees of freedom at
natural length scales. Two main challenges are identified in the MMM approach: (i) the com-
putational complexity of fully-coupled simulations, and (ii) inherent difficulties in describing the
temporal evolution of nano and microsystems with vastly different time-scales. We first introduce
the fundamental methods of quantum mechanics for description of the electronic degrees of freedom.
Essential concepts are first introduced, followed by a presentation of the Local Density Approxima-
tion (LDA) and Density Function Theory (DFT), pointing out to both limitations and successful
applications. Connections between ab intio methods and approximate interatomic potentials used
in Molecular Dynamics (MD) simulations are discussed. Atomistic simulation methods ( e.g. MD,
Langevin Dynamics (LD) and the Kinetic Monte Carlo (KMC)) and their applications at the nano-
scale are then discussed. When the length scale is too large for direct atomistic simulations and
too small to allow homogenization by continuum methods, reduction of the degrees of freedom is
accomplished by simulations of defect interactions, thus eliminating all electronic and atomic de-
grees of freedom in this meso-scale. The role played by Dislocation Dynamics (DD) and Statistical
Mechanics (SM) methods in understanding microstructure self-organization, heterogeneous plastic
deformation, material instabilities and failure phenomena is also presented. Applications of the
methods presented here are given for a number of nano and micro material systems.
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1 Introduction

Recent interest in nanotechnology is challenging the scientific community to analyze, develop and
design nano to micro-meter size devices for applications in new generations of computers, elec-
tronics, photonics and drug delivery systems. These new exciting application areas require novel
and sophisticated physically-based approaches for design and performance prediction. Thus theory
and modelling are playing an ever increasing role in this area to reduce development costs and
manufacturing times. An important problem which concerns the micro-electronic industry is the
reliable operation of integrated circuits (IC’s), where the lifetime is limited by the failure of in-
terconnect wires in between sub-micron semiconducting chips. In some cases, the nucleation and
growth of even a single nanovoid can cause interconnect failure. Statistical mechanics cannot ade-
quately address this situation. Future electronic and optoelectronic devices are expected to be even
smaller, with nanowires connecting nano-size memory and information storage and retrieval nano-
structures. Understanding the mechanics of such nano-engineered devices will enable high levels of
reliability and useful lifetimes to be achieved. Undoubtedly, defects are expected to play a major
role in these nano and micro-systems due to the crucial impact on the physical and mechanical
performance.

The development of ultra-strong, yet ductile materials by combining nano-layers with different
microstructure also requires detailed understanding of their mechanical properties. Such materials,
if properly designed, may be candidates for many demanding applications (e.g. micro-electronics,
opto-electronics, laser mirrors, aircraft structures, rocket engines, fuel cells, etc.).

Appropriate validation experiments are crucial to model verification. Models must predict
the correct behavior at each length scale. However current nano and micro-scale mechanical
experiments have been mostly limited to indentation (Loubet, Georges and Meille 1986, Wu,
Lee and Wang 1993) and bulge tests (Small, Daniels, Clemens and Nix 1994)(Baker 1993), and
to non-contact tests such as X-ray residual stress measurements (James 1980, Segmueller and
Murakami 1988)). Multi-scale interconnected approaches will need to be developed to interpret new
and highly specialized nano / micro-mechanical tests. One of the advantages of these approaches is
that, at each stage, physically meaningful parameters are predicted and used in subsequent models,
avoiding the use of empiricism and fitting parameters.

As the material dimensions become smaller, its resistance to deformation is increasingly deter-
mined by internal or external discontinuities (e.g. surfaces, grain boundaries, dislocation cell walls,
etc.). The Hall-Petch relationship has been widely used to explain grain size effects, although
the basis of the relationship is strictly related to dislocation pileups at grain boundaries. Recent
experimental observations on nano-crystalline materials with grains of the order of 10-20 nm in-
dicate that the material is weaker than what would be expected from the Hall-Petch relationship
(Erb, Palumbo, Zugic and Aust 1996, Campbell, Foiles, Huang, Hughes, King, Lassila, Nikkel,
Diaz de la Rubia, Shu and Smyshlyaev 1998). Thus, the interplay between interfacial or grain
boundary effects and slip mechanisms within a single crystal grain may result in either strength or
weakness, depending on their relative sizes. Although experimental observations of plastic defor-
mation heterogeneities are not new, the significance of these observations has not been addressed
till very recently. In same metallic alloys, regular patterns of highly localized deformation zones,
surrounded by vast material volumes which contain little or no deformation, are frequently seen
(Mughrabi 1983, Mughrabi 1987, Amodeo and Ghoniem 1988). The length scale associated with
these patterns (e.g. typically the size of dislocation cells, the ladder spacing in persistent slip bands
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(PSB’s), or the spacing between coarse shear bands) controls the material strength and ductility.
As it may not be possible to homogenize such types of microstructure in an average sense using
either atomistic simulations or continuum theories, new intermediate approaches will be needed.

In this article, we review several components of mechanics that are collectively needed to design
new nano and micro materials, and to understand their performance. We first discuss in Section
2 the main aspects of quantum mechanics based methods (Ab initio). Concepts of statistical me-
chanics that permit the interpretation of modern atomistic simulation methods, such as Molecular
Dynamics (MD) and Kinetic Monte Carlo (KMC) are introduced in Section 3, together with essen-
tial details of empirical interatomic potentials and computational techniques. For a description of
the mechanics of materials at length scales where defects and microstructure heterogeneities play
important roles, we introduce mesomechanics in Section 4. Finally, applications of nanomechanics
and micromechanics are given in Section 5.

2 Computational Quantum Mechanics

2.1 Essential Concepts

There is little doubt that most of the low-energy physics, chemistry, materials science, and biology
can be explained by the quantum mechanics of electrons and ions, and that, in many cases, the
properties and behavior of materials derive from the quantum mechanical description of events on
the atomic scale. Though there are many examples in materials science of significant progress having
been made without any need of quantum-mechanical modeling, this progress is often limited as one
pushes forward and encounters the atomic world. For instance, the understanding of the properties
of dislocations comes from classical elasticity theory, but even in these cases, until recently, very
little was known about the core of a dislocation or the effect of chemistry on the core, precisely
because this part of the dislocation requires detailed quantum-mechanical modeling. The ability of
quantum mechanics to predict the total energy and the atomic structure of a system of electrons
and nuclei, enables one to reap a tremendous benefit from a quantum mechanical calculation. Many
methods have been developed for solving the Schrödinger equation that can be used to calculate a
wide range of physical properties of materials, which require only a specification of the ions present
(by their atomic number). These methods are usually referred to as ab initio methods.

In considering the motion of electrons in condensed matter we are dealing with the problem of
describing the motion of an enormous number of electrons and nuclei (∼ 1023) obeying the laws
of quantum mechanics. Prediction of the electronic and geometric structure of a solid requires
calculation of the quantum-mechanical total energy of the system and subsequent minimization of
that energy with respect to the electronic and nuclear coordinates. The many-body Schrödinger
equation for a system containing n electrons and N nuclei has the form of an eigenvalue problem,

ĤΨ({RI, ri}) = EΨ({RI, ri}), (1)

with E the total energy of the many-body Hamiltonian operator Ĥ given by

Ĥ = −
∑

I

h̄2

2MI
∇2

I −
∑

i

h̄2

2mel
∇2

i +
1

2

∑

I

∑

J 6=I

ZIZJe
2

|RI − RJ |
−
∑

I

∑

i

ZIe
2

|RI − ri|
+

1

2

∑

i

∑

j 6=i

e2

|ri − rj |
, (2)
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Here, {RI} are the positions of the ions, {ri} are the positions of the electrons, MI are the masses
of the ions, me are the masses of the electrons, e is the electronic charge, ZI is the valence charge
of the Ith ion (nucleus plus core electrons), and h̄ is Planck’s constant divided by 2π. The terms in
the Hamiltonian are successively, the kinetic energy associated with the nuclei, the kinetic energy
associated with the electrons, the repulsive ion-ion Coulomb interaction, the attractive ion-electron
Coulomb interaction, and finally, the repulsive Coulomb interaction between the electrons. Al-
though in principle everything is known exactly, the Schrödinger equation (1) with this Hamilto-
nian is simply too difficult to solve directly. Hence, the quantum many-body problem is centered
upon finding intelligent approximations to the Hamiltonian and the many body wavefunction , that
retain the correct physics and are computationally tractable to solve.

The first simplification of this problem is attributed to Born and Oppenheimer who recognized
(M. and Oppenheimer 1927) that in most cases the nuclear and electronic degrees of freedom can
be decoupled since they exhibit vastly different dynamics. Because of the large difference in mass
between the electrons and nuclei (three to five orders of magnitude) and the fact that the forces on
the particles are the same, the electrons respond essentially instantaneously to the motion of the
nuclei. Thus, the nuclei can be treated adiabatically, leading to a separation of the electronic and
nuclear coordinates in the many-body wave function

Ψ({RI , ri}) = Ψel
{RI}

({ri})Ψnuc({RI}) (3)

- the so-called Born-Oppenheimer approximation (Parr and Yang 1989, Dreizler and Gross 1990).
The adiabatic principle reduces the many-body problem in the solution of the dynamics of the
electrons in some frozen-in configuration {RI} of the nuclei. Thus, to a good approximation,
the kinetic energy of the nuclei in Equation (2) can be neglected. The electronic wavefunction
Ψel

{RI}
({ri}) depends on the nuclear positions only parametrically - a different wavefunction needs to

be calculated for each nuclear configuration.This is an example of the philosophy behind systematic
degree of freedom elimination which is itself at the heart of multiscale modeling.

Within the Born-Oppenhemer approximation the complexity of the full many-body Schrödinger
equation reduces to that of the simpler electronic Schrödinger equation

ĤelΨel
{RI}

({ri}) = Eel
{RI}

Ψel
{RI}

({ri}), (4)

where

Ĥel = −
∑

i

h̄2

2mel
∇2

i +
∑

i

V ion(ri) +
1

2

∑

i

∑

j 6=i

e2

|ri − rj |
, (5)

and

V ion(ri) = −
∑

I

ZIe
2

|RI − ri|
(6)

is the ionic potential that every electron experiences.

To calculate the total energy for a given nuclear configuration we must add the nuclear-nuclear
repulsion energy to the electronic energy, namely

Etot = Eel
{RI}

+
1

2

∑

I

∑

J 6=I

ZIZJe
2

|RI − RJ |
. (7)
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Throughout the rest of the paper the “tot” and “el” superscripts will be dropped and only electronic
Hamiltonians and wavefunctions will be considered. Even with this simplification, the many-body
problem remains formidable.

Solving the Schrödinger equation with the above Hamiltonian is however still too complex for
most cases since the many-electron wavefunction contains 3N variables, which for a solid containing
N ∼ 1023 electrons, is simply an intractable number of degrees of freedom. Devising accurate
schemes to approximate the many-electron problem has been an important goal since the founding
of quantum mechanics in the early 1900s. Several notable advances have been made , starting
with Thomas-Fermi theory(Thomas 1927, Fermi 1928) in the late 1920s which make a significant
conceptual assumption about the electron density (ρ(r)), as the central unknown variable, rather
than the many-electron wavefunction. This approach simplified the problem considerably since the
density contains just three degrees of freedom, namely the x, y, z coordinates of the system. In 1930
came Hartree-Fock theory which builds upon the single-particle approximation proposed earlier by
Hartree, but in addition correctly accounts for the exchange interactions between electrons that are
a consequence of the Pauli principle (Fulde 1993). The various many-body methods just introduced
will be discussed in more detail in the following sections.

Free Electron Fermi Gas

As a first step to understand the properties of metals, one can ignore the interactions of the
valence electrons both with the ions and the other valence electrons. According to this simplified
model, the so-called free electron Fermi gas model, the valence electrons of the constituent atoms
become conduction electrons and move free through the volume of the metal. The fact that the
electrons are free indicates that they are also independent, which suggests that one can solve the
one-electron Schrödinger equation,

Hψ(r) = − h̄2

2m
∇2ψ(r) = εψ(r). (8)

The solution of Equation (8) is of the form of a plane wave,

ψk(r) =
1√
Ω
eik·r, (9)

where Ω = L3 is the volume of the confining cubic box of edge length L. Note, that the electronic
density, ρk(r) = |ψk(r)|2 = ψ∗

k(r)ψk(r), associated with each plane wave is uniform, indicating
that the electron is uniformly spread out throughout the confining box. The one-electron energy
eigenvalue corresponding to the plane wave characterized by wavevector k is

εk =
h̄2k2

2m
=

h̄2

2m
(k2

x + k2
y + k2

z). (10)

The one-electron wavefunctions are required to satisfy specified boundary conditions which in turn
restrict the allowed values of the wavevector. For example, one can use periodic boundary conditions

ψi(r + L) = ψi(r) (11)

or boundary conditions in which the wavefunction vanishes at the boundary

ψ(x = y = z = 0) = ψ(x = L, y, z) = ψ(x, y = L, z) = ψ(x, y, z = L) = 0. (12)
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Figure 1: Allowed values of the wavevector for a particle in a cubic box of edge length L employing
periodic boundary conditions ψi(r + L) = ψi(r).

Imposing periodic boundary conditions we find that components of the wavevector become quan-
tized,i.e.,

ki = ni
2π

L
, (13)

where i = x, y, z. The set of allowed points in k-space is shown schematically in Figure (2.1).
The isotropy of the energy spectrum implies a wide range of degeneracies. In order to build up
the N -electron ground state, we successively fill the one-electron states of lowest energy that are
not already occupied, taking into account the Pauli exclusion principle. This demands that no two
electrons can have their quantum numbers identical. The quantum numbers of a conduction orbital
are (nx, ny, nz,ms), where ms = ±1

2 is the spin quantum number.

Thus, for a system of N free electrons in the ground state, the occupied single-electron orbitals
fill a sphere of radius kF , the Fermi wavenumber, where the Fermi energy,

εF =
h̄2

2m
k2

F (14)

represents the highest occupied single-electron energy at zero temperature.

In the limit L → ∞, the energy levels are so closely spaced so we can just convert the discrete
sum over k states into an integral in k-space, taking into account the number of states per unit
volume of k-space. Since the k-points occupy the vertices of a simple cubic lattice in k-space, each
such point is assigned to a volume ( 2π

L )3, or, equivalently, there number of allowed k-values per
unit volume of k-space is simply,( L

2π )3 = Ω
(2π)3

. Hence, we can replace
∑

k = Ω
(2π)3

∫
d3k. Thus, the
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total number of electrons N is given by

N = 2
Ω

(2π)3

∫

εk≤εF

d3k =
Ωk3

F

3π2
, (15)

which gives that

kF =
(
3π2ρ

) 1
3 (16)

where ρ = N
Ω is the electron density. It is convenient to use the quantity, rs, which is defined as

the radius of the sphere whose volume is equal to the volume per conduction electron,

4π

3
r3s =

Ω

N
= ρ−1. (17)

The total energy is

Etot = 2
∑

k≤kF

εk = 2
4πΩ

(2π)3

∫
dkk2 h̄

2k2

2m
=

Ω

π2

h̄2k5
F

10m
. (18)

From Equations (15) and (18) the total energy per electron is

Etot

N
=

3

5
εF =

2.21

(rs/a0)2
(19)

or the total energy as a function of the electron density is

Etot

Ω
=

(
3h̄2

10m

)
(3π2)

2
3 ρ

5
3 . (20)

In the above equation

a0 =
h̄2

me2
= 0.529 × 10−8cm (21)

is the Bohr radius which is often used as a scale for measuring atomic distances. Values of rs/a0

for metals are in the range from about 2 (e.g. in Al) to about 6 (in Cs).

Electrons in Periodic Solids

The next step is understanding the electrons in perfectly periodic solids where the ions are
arranged in a regular periodic lattice. In the independent electron approximation, the interactions
of the electrons with the ions and the electron-electron interactions are represented by an effective
one-electron potential, V eff (r), which must have the periodicity of the underlying Bravais lattice,
i.e,

V eff (r + R) = V eff (r) (22)

for all Bravais lattice vectors R
R = n1a1 + n2a2 + n3a3. (23)

Here, the ai’s are defined as the primitive lattice vectors which generate the lattice and the ni’s
are integers. It can be shown that the Fourier Transform (FT) of any function satisfying Equation
(22) is of the form

V eff (r) =
∑

G

V eff (G)eiG·r, (24)
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where the only vectors appearing in the sum are defined as the reciprocal lattice vectors, satisfying
the condition

R · G = 2mπ, (25)

where m is any integer and V eff (G) is the FT component.

Bloch’s theorem states that the one-electron eigenstates of the one- electron Hamiltonian,

Hψ =

[
− h̄2

2m
∇2 + V eff (r)

]
ψ = εψ, (26)

with V eff (r) satisfying Equation (22), has also the same underlying symmetry of the Bravais lattice
up to a phase factor,

ψk(r) = eik·ruk(r), (27)

where
uk(r + R) = uk(r) (28)

for all R in the Bravais lattice.

Due to the periodicity of the lattice, it suffices to study the single-electron Schrödinger Equation
(26) only within the primitive unit cell defined by the primitive lattice vectors {ai}’s in real space
and only for wavevectors k which lie in the first Brillouin zone (BZ). The first Brillouin zone is the
Wigner-Seitz primitive cell in the reciprocal lattice, enclosed by planes that are the perpendicular
bisectors of the reciprocal lattice vectors {G}’s drawn from the origin to the nearby reciprocal lattice
points. The importance of the first Brillouin zone is that if the tip of the electron’s wavevector lies
on the boundary of the BZ it satisfies the Bragg diffraction condition

k′ − k = ∆k = G. (29)

Thus, the single-electron wavefunction ψk(r) can be written as

ψk(r) = eik·r
∑

G′

ck(G′)eiG
′·r, (30)

where the wavevector k satisfies the periodic boundary conditions Equation (13). Substituting the
expressions (22) and (30) in the single-electron Schrödinger equation (26) we find

∑

G′

[( h̄2

2m
(k + G′)2 − εk

)
ei(k+G′)·r +

∑

G

V eff (G)ei(k+G+G′)·r
]
ck(G′) = 0. (31)

Multiplying by exp−i(k + G′′) · r and integrating over r gives

[ h̄2

2m
(k + G)2 − εk

]
ck(G) +

∑

G′

V eff (G − G′)ck(G′) = 0. (32)

For each k point in the first Brillouin zone, the original problem is reduced to a set of linear
equations Equation (32) for the unknown coefficients, ck(G), of the single-electron wavefunction
ψk(r). It is instructive to solve the set of linear equations for the case of a weak periodic potential
where all Fourrier components of the potential are negligible except for one V (G0), namely

V eff (G) = {V (G0), ifG = G0;
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0, ifG = G0. (33)

In this case Equation (32) reduces to a system of two linear equations of the form

[
h̄2k2

2m
− εk

]
ck(0) + V ∗(G0)ck(G0) = 0 (34)

[
h̄2(k + G0)2

2m
− εk

]
ck(G0) + V (G0)ck(0) = 0. (35)

Solving the system gives two eigenvalues

εk =
h̄2k2

2m
± |V (G0)|, (36)

one lower than the free-electron kinetic energy by |V (G0)|, and one higher by |V (G0)|. Thus, this
simple type of potential energy, 2|V (G0)| cos(Gx) has created and energy gap of Egap = 2|V (G0)|
at the zone boundary.

Pseudopotential Method
In solving the single-electron Schrödinger equation [Equation (22)] the effective potential includes
the ionic potential, which varies rapidly in the vicinity of the nucleus and is weakly varying in the
region between nuclei, in the so-called “interstitial” region. It is helpful to distinguish between
the valence and core electrons: the core wavefunctions are well localized about the lattice sites,
whereas the valence electrons have appreciably probability in the interstitial regions where they
participate very actively in the crystal bonding. The valence wavefunctions oscillate very rapidly
in the core region, whereas they vary smoothly in the interstitial region. Their complicated nodal
structure in the core region is created from the requirement that the wave function be orthogonal
to the wave functions of the core electrons. Because of this difference between the valence and
core electrons, the pseudopotential method has been developed (Phillips and Kleinman 1959). The
pseudopotential is constructed such that it matches the true potential outside a given radius,
designated the core radius. Similarly, each pseudowavefunction must match the corresponding true
wavefunction beyond this distance. In Figure (2) we show the schematic representation of the
construction of the pseudo-wavefunction and pseudopotential. In addition, the charge densities
obtained outside the core region must be identical to the true charge density. Thus, the integral
of the squared amplitudes of the real and pseudo wave functions over the core region must be
identical. This condition is known as norm-conservation.

The “pseudopotential” V pseudo and the pseudo wave function |φ̃(v) > are given by

V pseudo = V eff +
∑

c

(ε(v) − ε(c))|ψ(c) >< ψ(c)|, (37)

and
|ψ(v) >= |φ̃(v) > −

∑

c

< ψ(c)|φ̃(v) > |ψ(c) > . (38)

Here, |ψ(c) > and |ψ(v) > are the single-electron states for the core and valence electrons, respec-
tively, and ε(c) and ε(v) are the corresponding single-electron core- and valence energies. Since
ε(v) > ε(c) the second term is repulsive and tends to push the |φ̃(v) > outside the core. Thus, the
resulting pseudopotential (and consequently the pseudo wave function) is a smooth function in this
region reducing the number of plane waves needed in the basis expansion. This is known as the
cancellation theorem(Pickett 1989).
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V ion

           

ψ(r) 

V pseudo 

φ(r) 

r
c
 

r

Figure 2: Schematic diagram of the real (dashed red curve) and pseudo (solid red curve) wavefunc-
tion, |φ̃(v) >, respectively. Also we show the Coulomb potential V Coul(r) (dashed blue curve) and
the pseudopotential V pseudo (solid blue curve); rc is the cutoff radius.

The Hartree and Hartree-Fock Approximations

The Hartree approximation is one of the simplest approximate theories for solving the many body
Hamiltonian. It is based on the assumption of independent electrons and that the true many-body
wavefunction can be written as a product of single-particle wavefunctions of the form

Ψ(r1σ1, r2σ2, . . . , rNσN ) = ϕ1(r1σ1)ϕ2(r2σ2) . . . ϕN (rNσN ), (39)

where the one-electron wavefunctions, ϕi(riσi) = φi(ri)σi, are an orthonormal set, i.e.,

< ϕi|ϕj >= δi,j . (40)

Here, φi(ri) is the spatial orbital and σi a two component spinor, α =

(
1
0

)
for spin up and

β =

(
0
1

)
for spin down-electron with respect to a preferred axis.

When the electron system is in the state, Ψ({riσi)}, the expectation value of the energy is given
by,

E[Ψ] =< H >Ψ=
< Ψ|Ĥ|Ψ >

< Ψ|Ψ >
=

∫
Ψ∗ĤΨdr1 . . . drN∫
Ψ∗Ψdr1 . . . drN

. (41)

The expectation value of the Hamiltonian in the state of Equation (39) is

< H >Ψ =
∑

i

∫
drφ?

i (r)
[
− h̄2

2m
∇r

2 + V ion(r)
]
φi(r)

13



+
e2

2

∑

i,jj 6=i

∫
dr dr′φ?

i (r)φ
?
j (r

′)
1

|r − r′|φi(r)φj(r
′). (42)

The best solution |Ψ > must be a stationary state of the system, i.e., δE[Ψ] = 0. The variations
of the bra and ket of φ’s are considered to be independent of each other because the wavefunctions
are complex quantities. Thus, minimizing E[Ψ] with respect to variations in < δφi|, subject to the
constraint

∑
i εi < δφi|φi >= 0, where εi are Lagrange multipliers, we find

∑

i

∫
δφ?

i (r)
[
− h̄2

2m
∇r

2 + V ion(r) + e2
∑

j 6=i

∫
φ?

j (r
′)

1

|r − r′|φj(r
′)dr′ − εi

]
φi(r)dr = 0. (43)

Since the variations < δφi| are independent, the above equation cannot be satisfied unless the
coefficients of each < δφi| vanish independently, namely

[
− h̄2

2m
∇r

2 + V ion(r) +
∑

j 6=i

∫
φ?

j (r
′)

e2

|r − r′|φj(r
′)dr′

]
φi(r) = εiφi(r). (44)

These equations for each occupied one-electron orbital, φi(r), are called the Hartree equations.
They are eigenvalue equations for a single electron moving in the Coulomb potential of the nuclei
plus the Hartree potential

V H
i (r) =

∑

j 6=i

∫
φ?

j (r
′)

e2

|r − r′|φj(r
′)dr′ =

∑

j 6=i

∫
dr′

ρj(r
′)

|r − r′| , (45)

due to all the other electrons which depends on their charge density e|φi(r
′)|2. This charge density

is only known after the above equations have been solved for each i. The self-consistent field
approximation is an iterative procedure for solving the above set of nonlinear equations. A trial
function is used to calculate the initial charge density. New single particle wave functions are found
by numerically solving the above equations. These wave functions now yield new charge densities,
which in turn yield new wave functions. The procedure is repeated until self consistency is reached.

The Hartree approximation does not include the electronic correlations associated with the
fermionic nature of the electrons. Namely, the many-electron wavefunction needs to be antisym-
metric with respect to an interchange of any two electrons,

Ψ(r1σ1, . . . , riσi, . . . , rjσj , . . . , rNσN ) = −Ψ(r1σ1, . . . , rjσj , . . . , riσi, . . . , rNσN ), (46)

a requirement imposed by the Pauli exclusion principle.

The next simplest generalization of the Hartree approximation is the Hartree-Fock approxi-
mation. It is based on the assumption of independent electrons and that the true many-body
wavefunction can be written in the form of a single Slater determinant of single-electron wave
functions, the so-called spin-orbitals

Ψ(r1σ1, . . . , rNσN ) =
1√
N !

∣∣∣∣∣∣∣∣∣

ϕ1(r1σ1) ϕ1(r2σ2) . . . ϕ1(rNσ1)
ϕ2(r1σ1) ϕ2(r2σ2) . . . ϕ2(rNσN )

...
...

. . .
...

ϕN (r1σ1) ϕN (r2σ2) . . . ϕN (rNσN )

∣∣∣∣∣∣∣∣∣
. (47)

14



This simple ansatz for the wavefunction Ψ captures much of the physics required for accurate
solutions of the Hamiltonian.

The expectation value of the energy in the Hartree-Fock state of Equation (47) becomes

< H >Ψ =
∑

i

∫
drφ?

i (r)
[
− h̄2

2m
∇r

2 + V ion(r)
]
φi(r)

+
e2

2

∑

i,jj 6=i

∫
dr dr′φ?

i (r)φ
?
j (r

′)
1

|r − r′|φi(r)φj(r
′)

− e2

2

∑

i,jj 6=i

δsisj

∫
dr dr′φ?

i (r)φ
?
j (r

′)
1

|r − r′|φi(r
′)φj(r). (48)

Minimizing the above equation with respect to δψ?
i , subject to the constraint∑

i εi
∫
drδφ?

i (r)φi(r) = 0 leads to the Hartree-Fock equations

[
− h̄2

2m
∇r

2 + V ion(r) + V H(r)
]
φi(r) − e2

∑

j 6=i

δsisj

∫
dr′φ?

j (r
′)

1

|r − r′|φi(r
′)φj(r) = εiφi(r). (49)

The last negative term in Equation (49) which acts solely between electrons with parallel spins is
called the exchange term. It is a non-local operator involving the product φi(r

′)φi(r) rather than
the |φi(r)|2). The gain in potential energy found in Hartree-Fock descends from the fact that the
Pauli principle is built into the many-body wave function and keeps apart electrons with parallel
spins, lowering their Coulomb repulsive interaction energy on average.

Hartree-Fock approximation for a free electron gas
The Hartree-Fock equations can be solved exactly for the jellium model, in which the periodic
array of ions is replaced with a uniform distribution of positive charge with the same density as
the electronic charge. Recall that the electronic charge density for the free electron model is also
uniform. Hence, the ionic potential precisely cancels the Hartree potential and the only term
surviving is the exchange potential. In the plane wave basis φi → φk the exchange potential
assumes the form

− e2√
Ω

∑

k′

∫
dr′

e−ik′·r′eik·r
′

eik
′·r

Ω

1

|r − r′| = − e2√
Ω

[∑

k′

∫
dr′

e−i(k−k′)·(r−r′)

Ω

1

|r − r′|

]
eik·r. (50)

Expressing the Coulomb interaction in terms of its Fourier transform

1

|r − r′| =

∫
dq

(2π)3
4π

q2
eiq·(r−r′) (51)

the exchange potential becomes

− 4πe2√
Ω

∫

k′<kF

dk′

(2π)3

∫
dq

q2

[
1

(2π)3

∫
dr′e−i(k−k′−q)·(r−r′)

]
eik·r

= −4πe2√
Ω

[∫

k′<kF

dk′

(2π)3

∫
dq
δ(k − k′ − q)

q2

]
eik·r

= −4πe2√
Ω

[
1

(2π)3

∫

k′<kF

dk′

|k − k′|2
]
eik·r = −2e2

π
kF F

(
k

kF

)[
1√
Ω
eik·r

]
, (52)
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where the function F(x) is defined as

F (x) =
1

2
+

1 − x2

4x
ln

∣∣∣∣
1 + x

1 − x

∣∣∣∣. (53)

Thus, the single particle Hartree-Fock energy εk is

εk =
h̄2k2

2m
− 2e2

π
kF F

(
k

kF

)

=

[(
(9π/4)

1
3

rs/a0

)2

(k/kF )2 − 4

π

(
(9π/4)

1
3

rs/a0

)
F (k/kF )

]
Ry. (54)

In deriving the second line in Equation (54) we have used the unit of energy rydberg

h̄2

2ma2
0

=
e2

2a0
= 1Ry, (55)

and Equations (11) and (12) for kF in terms of the density and rs. The function F(x) and the single
particle energy εk normalized to εF for rs

a0
= 4 are plotted in Figures (3-a) and (3-b), respectively.

The expression Equation (54) predicts that the derivative of the renormalized single-particle energy
εHF
k has a logarithmic divergence at |k| = kF . Namely, on the Fermi surface the effective mass

m? ≡ h̄2kF∣∣∣∇kε
HF
k

∣∣∣
k=kF

(56)

and the density of single-particle, which is proportional tom? vanish within Hartree-Fock. The main
fault within the Hartree-Fock approximation is that by including exchange between electrons with
parallel spin, but neglecting correlations due to the Coulomb repulsions which are most effective for
electrons with antiparallel spins, it includes neither screening nor the collective plasma excitation.
The singularity can be traced back to the very long range of the inverse square of the Coulomb
interaction which has a Fourier transform 4πe2/q2 diverging at q = 0.

The total energy of the N-electron system can be calculated by summing the occupied (k < kF )
single-particle Hartree-Fock energies

EHF
tot = 2

∑

k≤kF

h̄2k2

2m
− e2kF

π

∑

k≤kF

[
1 +

k2
F − k2

2kkF
ln

∣∣∣∣
kF + k

kF − k

∣∣∣∣
]
. (57)

The first term is simply the kinetic energy of the ideal Fermi system in Equation (57). Upon
converting the second term into an integral, the total Hartree-Fock energy is

EHF
tot

N
=

[
3

5
εF − 3

4

e2kF

π

]
=

[
2.21

(rs/a0)2
− 0.916

(rs/a0)

]
Ry. (58)

Since rs/a0 in metals is in the range from to 2 to 6, the second term in Equation (58) is comparable
to the first in size. Notice That for small values of rs (high densities), the kinetic energy term
dominates. As rs increases, the exchange term contributes more and more to EHF

tot /N and eventually
gives binding. In the low density limit (rs → ∞), the exchange contribution dominates. In this
limit correlation effects become dominant leading to the formation of Wigner lattices(Wigner 1934).
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Figure 3: Left panel: The function F(x) defined in equation Right panel: The single-electron

Hartree-Fock energy normalized to the Fermi energy value,
εHF
k

εF
= [

(
k

kF
)2 − 0.663

(
rs

a0

)
F (k/kF )

]

plotted as a function of k/kF for rs

a0
= 4. The single-electron Hartree-Fock energy is compared to

the corresponding free-electron energy.

Only then the overlap of the electronic wave functions will be small enough that the formation of
energy band with delocalized electrons will be overcome by the long-range Coulomb interaction
leading to crystallization of the electrons.

As discussed before, in the Hartree-Fock method electrons of the same spin are prevented from
occupying the same space volume. On the other hand, electrons with antiparallel spin come ar-
bitrary close and the pair correlation function is independent of r. There is no tendency to keep
electrons apart to reduce their Coulomb repulsion. The pair distribution function calculated from
the true ground-state wave function is expected to be strongly reduced for small electron distances.
The correlation energy is defined as the difference between the energy in the Hartree-Fock limit
(EHF

tot ) and the exact nonrelativistic energy of a system (Eexact
tot ), namely

Eexact
tot ≡ EHF

tot + Ecorr (59)

This energy will always be negative because the Hartree-Fock energy is an upper bound to
the exact energy (this is guaranteed by the variational theorem, as explained above). The exact
nonrelativistic energy Eexact

tot could, in principle, be calculated by performing a full configuration
interaction (CI) calculation in a complete one-electron basis set or a full diffusion Monte Carlo
calculation (Fulde 1993).

Hartree-Fock theory is a useful tool for many problems. Results can be systematically im-
proved through an increasingly rigorous choice of basis set. It gives good structures and vibrational
modes for small molecules, although tends to under predict bond lengths with a corresponding
over prediction of frequencies(Fulde 1993). A major flaw with the method is the lack of electron
correlation (leading to zero density of states at the Fermi level for jellium). This precludes the
use of Hartree-Fock theory in problems such as, for example, metallic systems. The difference in
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correlation between ground and excited states in real systems means that Hartree-Fock greatly over
predicts the width of the band gap.

Thomas Fermi Theory
The Thomas-Fermi theory(Thomas 1927, Fermi 1928) marks a change in approach from Hartree
and Hartree-Fock theory, as it was the first method to propose using the electronic charge density
as its fundamental variable instead of the man-body wavefunction. It is thus the earliest form of
density functional theory. The model can be understood with reference to Figure (4). Although
the charge density is that of a non-uniform electron gas, the number of electrons in a given element,
d|r|, can be expressed as ρ(r)dr, where ρ(r) is the charge density for a uniform electron gas at that
point. The Thomas-Fermi energy functional, ETF [ρ(r)] is

ETF [ρ(r)] =
3h̄2

10m
(3π2)

2
3

∫
ρ5/3(r)dr +

∫
ρ(r)V ion(r)dr +

1

2

∫ ∫
ρ(r)ρ(r′)

|r − r′| drdr
′. (60)

The first term is the electronic kinetic energy associated with a system of non-interacting electrons
in a homogeneous electron gas. This form is obtained by integrating the kinetic energy density of
a homogeneous electron gas of density dr at r which is given by Equation (20). The second term
is the classical electrostatic energy between the nuclei and the electrons, where V ion(r) is given by
Equation (6). Finally, the third term represents the electron-electron interactions of the system,
i.e. the Hartree energy.

To obtain the ground state density and energy of the system, the Thomas-Fermi energy func-
tional must be minimized subject to the constraint that the number of electrons is conserved

N =

∫
ρ(r)dr. (61)

This type of constrained minimization problem, which occurs frequently within many-body meth-
ods, can be performed using the technique of Lagrange multipliers, µ, leading to the stationary
condition

δ

[
ETF [ρ(r)] − µ

(∫
ρ(r)dr −N

)]
= 0, (62)

which leads the so-called Thomas-Fermi equations,

h̄2

2m
(3π2)

2
3 ρ2/3(r) + V ion(r) +

1

2

∫
ρ(r′)

|r − r′|dr
′ − µ = 0 (63)

that can be solved directly to obtain the ground-state density.

Thomas-Fermi theory suffers from many deficiencies, probably the most serious defect is that
it does not predict bonding between atoms (March 1957) , so molecules and solids cannot form in
this theory. The main source of error comes from approximating the kinetic energy in such a crude
way. The kinetic energy represents a substantial portion of the total energy of a system and so
even small errors prove disastrous. Another shortcoming is the over-simplified description of the
electron-electron interactions, which are treated classically and so do not take account of quantum
phenomenon such as the exchange interaction.

Density Functional Theory Density functional theory (DFT) (Kohn and Sham 1965, Hohen-
berg and Kohn 1964, Jones and Gunnarsson 1989, Dreizler and Gross 1990, Parr and Yang 1989)
has been proven to be a very powerful quantum mechanical method in investigating the electronic
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(r)

rdr

Locally uniform
electron gas

Figure 4: Schematic diagram showing the principle of the local density approximation and also
Thomas Fermi theory. Namely that for a given radial slab, dr, the local charge density can be
considered to be ρ(r), the density of an equivalent uniform homogeneous electron gas.

structure of atoms, molecules and solids. Here, the density of the electrons, ρ(r), or spin density,
ρσ(r), is the fundamental quantity, rather the total wave function employed for example in Hartree-
Fock theory (Ashcroft and Mermin (1976)). The DFT makes successful predictions of ground-state
properties for moderately correlated electronic systems (Perdew (1999)). DFT can provide ac-
curate ground-state properties for real materials - such as total energies and energy differences,
cohesive energies of solids and atomization energies of molecules, surface energies, energy barriers,
atomic structure, and magnetic moments - and provides a scheme for calculating them (Jones and
Gunnarsson 1989, Perdew 1999, Fulde 1993).

We next give a brief discussion of the essential concepts of DFT. Hohenberg and Kohn (Ho-
henberg and Kohn (1964)) proved that the total energy, including exchange and correlation, of an
electron gas (even in the presence of a static external potential) is a unique functional of the electron
density. The minimum value of the total-energy functional is the ground-state energy of the system,
and the density that yields this minimum value is the exact single-particle ground-state density.
Kohn and Sham (Kohn and Sham (1965)) then showed how it is possible, formally, to replace the
many-electron problem by an exactly equivalent set of self-consistent one-electron equations

[−1

2
∇2 + vσ(r) +

∫
d3r′

ρ(r′)

|r − r′| + vσ
xc(r)]ψkσ(r) = εkσψkσ(r), (64)

where ψkσ(r) are the Kohn-Sham orbitals, and the spin-dependent exchange-correlation poten-
tial is defined as

vσ
xc(r) ≡

δExc [ρ↑, ρ↓]

δρσ(r)
. (65)
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Here, Exc [ρ↑, ρ↓] is the exchange-correlation energy and the density of electrons, ρσ(r), of spin
σ(= ↑, ↓) is found by summing the squares of the occupied orbitals,

ρσ(r) =
∑

k

|ψkσ(r)|2θ(µ− εkσ), (66)

where θ(x) is the step function and µ is the chemical potential. The exchange-correlation energy
is “nature’s glue”. It is largely responsible for the binding of atoms to form molecules and solids.

The total electronic density is
ρ(r) = ρ↑(r) + ρ↓(r). (67)

Aside from the nucleus-nucleus repulsion energy, the total energy is

E =
∑

kσ

< ψkσ| −
1

2
∇2|ψkσ > θ(µ− εkσ) +

∑

σ

∫
drvσ(r)ρσ(r) + U [ρ] + Exc [ρ↑, ρ↓], (68)

where

U [ρ] =
1

2

∫
d3r

∫
d3r′

ρ(r)ρ(r′)

|r − r′| (69)

is the Hartree self-repulsion of the electron density.

The Kohn-Sham equations represent a mapping of the interacting many-electron system onto
a system of noninteracting electrons moving in an effective nonlocal potential due to all the other
electrons. The Kohn-Sham approach achieves an exact correspondence of the density and the
ground-state energy of non-interacting Fermions and the “real” many body system described by
the Schrödinger equation. A schematic cartoon representing this relationship is displayed in Figure
(5).

The Kohn-Sham equations must be solved self-consistently so that the occupied electronic states
generate a charge density that produces the electronic potential that was used to construct the
equations. New iterative diagonalization approaches can be used to minimize the total-energy
functional (Car and Parrinello 1985, Payne, Teter, Allan, Arias and Joannopoulos 1992, Gillan
1989). These are much more efficient than the traditional diagonalization methods. If the exchange-
correlation energy functional were known exactly, then taking the functional derivative with respect
to the density would produce an exchange-correlation potential that included the effects of exchange
and correlation exactly.

The complexity of the real many-body problem is contained in the unknown exchange correlation
potential, vσ

xc(r). Nevertheless, making simple approximations, we can hope to circumvent the
complexity of the problem. Indeed the simplest possible approximation, i.e., the local-density
(LDA) or local-spin-density (LSDA) approximation, have been proven (Kohn and Sham 1965, von
Barth and Hedin 1972) very successful.

2.2 The Local Density Approximation (LDA)

This simplest method of describing the exchange-correlation energy of an electronic system has been
the workhorse of condensed matter physics for almost thirty years. In the LSDA the exchange-
correlation energy of an electronic system is constructed by assuming that the exchange-correlation
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Ψ(r1, r2, . . . , rN ) φ(r)

Figure 5: Schematic representation of the relationship between the “real” many-body system (left
hand side) and the non-interacting system of Kohn-Sham density functional theory (right hand
side).

1. Pick a trial one-electron potential V eff

(in)(r)

↓

2. Solve Hψk(r) = [− h2

2m∇2 − V eff

(in)(r)]ψk(r) = εkψk(r)

↓

3. Calculate ρ(r)

↓

4. Construct VH(r), Vxc(r), and V eff

(out)(r)

↓

5. If |V eff

(out)(r) − V eff

(in)(r)| < δ calculate total energy; else, mix Vout and Vin and GOTO 2.

Figure 6: Flow chart describing the computational procedure for the self-consistent calculation of
the total energy of a solid.
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energy per electron at a point r in the electron gas, εxc, is equal to the exchange-correlation energy
per electron in an electron gas of uniform spin densities ρ↑, ρ↓, namely,

ELSDA
xc [ρ↑, ρ↓] =

∫
d3rρ(r)εunif

xc (ρ↑(r)ρ↓(r)). (70)

The LSDA assumes that the exchange-correlation energy functional is purely local. Several pa-
rameterizations exist for the exchange-correlation energy of a homogenous electron gas all of which
lead to total-energy results that are very similar (Kohn and Sham 1965, Hedin and Lundqvist
1971, Vosko, Wilk and Nusair 1980, Perdew and Zunger 1981). These parameterizations use inter-
polation formulas to link exact results for the exchange-correlation energy of high-density electron
gases and calculations of the exchange-correlation energy of intermediate and low-density electron
gases. The LDA or LSDA, in principle, ignores corrections to the exchange-correlation energy at a
point r due to nearby inhomogeneities in the electron gas. Considering the inexact nature of the
approximation, it is remarkable that calculations performed using the LDA have been so successful.
Recent work has shown that this success can be partially attributed to the fact that the LDA gives
the correct sum rules for the exchange-correlation hole (Harris and Jones 1974, Gunnarsson and
Lundqvist 1976, Langreth and Perdew 1977).

A number of attempts to improve the LDA or LSDA use gradient expansions of the charge or
spin density. In this way non-local information about the charge or spin density could be provided
from the gradient terms. These type of approximations are in generally referred to as gradient ex-
pansion approximations (Perdew 1999). The most popular, the Perdew-Wang generalized gradient
approximation (GGA) (Perdew 1999, Perdew 1991, Perdew, Burke and Wang 1996)

EGGA
xc [ρ↑, ρ↓] =

∫
d3rf(ρ↑, ρ↓,∇ρ↑,∇ρ↓) (71)

starts from the second-order gradient expansion of the exchange-correlation hole density, then
cuts off the spurious long-range (|r−r′| → ∞) parts to restore the sum rules. The GGA is typically
more accurate than LSD, especially for the rapidly-varying densities of atoms and molecules. In
recent years, GGA’s have made DFT popular in quantum chemistry.

2.3 Basis Functions

In the discussion of the Kohn-Sham equations earlier, nothing has been said about the way ψk(r)
itself will be determined. Many methods share the common feature that the wave function is
presumed to exist as a linear combination of some set of basis functions which might be written
generically as

ψ(r) =
∑

n

αnφn(r), (72)

where αn is the weight associated with the nth basis function φn(r). The solution of the Kohn-
Sham equations in turn becomes a search for unknown coefficients rather than unknown functions.
Part of the variety associated with the many different implementations of DFT codes is associated
with the choice of basis functions and the form of the effective crystal potential. In deciding on a
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particular set of basis functions, a compromise will have to be made between high-accuracy results,
which require a large basis set, and computational costs, which favor small basis sets. Similar
arguments hold with respect to the functional forms of the φn(r). There are several powerful
techniques in electronic structure calculations.

The various methods may be divided into those which express the wave functions as linear
combinations of some fixed basis functions, say linear combination of atomic orbitals (LCAO)
localized about each atomic site (Eschrig (1989)) or those which use free- electron-like basis, the
so-called plane-wave basis set (Payne et al. 1992, Denteneer and van Haeringen 1985).

Alternatively, there are those methods which employ matching of partial waves, such as the
full potential linear augmented plane wave (FLAPW) method (Wimmer, Krakauer, Weinert and
Freeman (1981)), the full potential linear muffin-tin-orbital (FLMTO) method (Price and Cooper
1989, Price, Wills and Cooper 1992), and the full potential Korringa-Kohn-Rostoker (KKR) method
(Papanikolaou, Zeller and Dederichs (2002)).

2.4 Limitations of the DFT

Density functional theory within the LSDA and GGA generally work well for ground-state proper-
ties of moderately-correlated electron systems. In some systems, however, the correlations among
the electrons are stronger than might be expected from the local spin densities. This occurs in
systems where the electrons partially preserve their localized atomic-like nature, as in the case for
4f(5f)-states in rare-earth (actinide) atoms and sometimes for 3d-states of transition metal atoms.
Typical examples include rare-earth metals, where LDA predicts a strong peak of 4f -orbital origin
in the density of states at the Fermi level, which is in disagreement with experiment, and cer-
tain insulating transition metal oxides, which LDA predicts to be metallic. Other systems with
anomalous electronic and magnetic properties are heavy-fermion compounds, copper-oxides based
superconductors, colossal magnetoresistance manganites, etc. In the past few years, there is a
growing sense that realistic LDA-like approaches may be generalized to include the most signifi-
cant correlation effects for strongly correlated electron systems of the Mott-Hubbard and charge-
transfer variety (Anisimov 2000). All these approaches are based on LDA as a starting point
and introduce additional terms intended to treat Coulomb correlations between electrons. Among
these are the LDA+U method(Anisimov, Zaanen and Andersen 1991, Lichtenstein, Zaanen and
Anisimov 1995), the self-interaction correction (SIC) method (Perdew and Zunger 1981, Svane and
Gunnarsson 1990), the LDA+Dynamical Mean Field Theory (DMFT) method (Georges, Kotliar,
Krauth and Rozenberg (1996)), and the Optimized Effective Potential (OEP) method (Gross,
Kreibich, Lein and Petersilka (1998)).

In addition, only limited information about spectroscopic properties is available from such
ground-state calculations. Quasiparticle (QP) excitations, as they occur in photoemission and
tunneling experiments, are not fully described by the Kohn-Sham eigenvalues. In fact, the band
structures given by the LDA are often in distinct disagreement from experimental data, showing
systematic deviations of band dispersions and band gaps. In addition to the failures of the band
structure, two-particle excitations are also not obtained with satisfying accuracy. In particular,
optical spectra, which correspond to electron-hole excitations in the electronic system, cannot be
described by straight forward use of DFT or other ground-state theories. A time-dependent exten-
sion of DFT ( Gross et al. (1998)) can treat excitation properties, but so far the method is limited
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to finite systems. Excitation properties have also been studied using the Configuration Interaction
(CI) method (Dykstra (1988)), but similarly, this method is very much restricted to small sys-
tems such as small molecules or clusters. A major achievement in the field was given by the GW
approximation (GWA) (Hedin and Lundqvist (1969)) for the self-energy, which allows for a very
accurate evaluation of the self energy on the basis of results from a preceding DFT calculation.
Highly accurate band structures for real materials have been obtained by this method, including
bulk semiconductors, insulators, metals, semiconductor surfaces, atoms, defects, and clusters, thus
making the GWA a standard tool in predicting the electronic quasiparticle spectrum of moderately
correlated electron systems (Louie (1996)).

2.5 Linear scaling electronic structure methods

A wealth of efficient methods, the so-called O(N) methods, have recently been developed (Yang
1991, Li, Nunes and Vanderbilt 1993, Ordejon, Drabold, Grumbach and Martin 1993, Goedecker
1999) for calculating electronic properties of an extended system that require an amount of com-
putation that scales linearly with the size of the system N. On the contrary, the widely used
Carr-Parinello (Car and Parrinello 1985) molecular dynamics methods and various minimization
techniques (Payne et al. 1992) are limited because the computational time required scales as N3,
where N can be defined to be the number of atoms or the volume of the system. Thus, these meth-
ods are an essential tool for the calculation of the electronic structure of large systems containing
many atoms. Most O(N) algorithms are built around the density matrix or its representation in
terms of Wannier functions (Marzari and Vanderbilt 1997) and take advantage of its decay prop-
erties. To obtain linear scaling, one has to cut off the exponentially decaying quantities when they
are small enough. This introduces the concept of a localization region. Only inside this localization
region is the quantity calculated; outside it is assumed to vanish. For simplicity the localization
region is usually taken to be a sphere, even though the optimal shape might be different.

O(N) methods have become as essential part of most large-scale atomistic simulations based on
either tight-binding or semiempirical methods. The use of O(N) methods within DFT methods is
not yet widespread. All the algorithms that would allow us to treat very large basis sets within
DFT have certain shortcomings. An illustration of the wide range of areas where O(N) methods
have made possible the study of systems that were too big to be studied with conventional methods
include the 90◦ partial dislocation in silicon (Nunes, Bennetto and Vanderbilt 1996), the surface
reconstruction properties of silicon nanobars (Ismail-Beigi and Arias 1999), the molecular crash
simulation of C60 fullerenes colliding with a diamond surface (Galli and Mauri 1994), the irradiation-
mediated knockout of carbon atoms from carbon nanotubes (Ajayan, Ravikumar and Charlier
1998), and the geometric structure of large biomelecules (Lewis, Ordejon and Sankey 1997).

3 Computational Methods for Atomistic Simulations

3.1 Basic Concepts of Statistical Mechanics

The ab initio methods presented in the previous section are quite reliable in predicting many
properties at the nano-scale. However, they are currently limited to systems containing a few
hundred atoms . Such methods serve two important purposes. First, they provide direct information
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on the response of materials to external environments (e.g. force and temperature). Second,
they also generate a database of properties that can be used to construct effective (empirical)
interatomic potentials. To determine the properties of an ensemble of atoms larger than what can
be handled by computational quantum mechanics, the description of the atomic interactions must
be approximated. The Molecular Dynamics (MD) method is developed to enable studies of the
properties of material volumes containing millions to billions of atoms with effective interatomic
potentials. The basic idea is to eliminate all electronic degrees of freedom, and assume that the
electrons are glued to the nuclei. Thus, the interaction between two atoms is represented by a
potential function that depends on the atomic configuration (i.e. relative displacement) and the
local environment (i.e. electrons). Based on the electronic structure database, or alternatively
using experimental measurements of specific properties, approximate effective potentials can be
constructed. According to classical Newtonian mechanics, the dynamic evolution of all atoms can
be fully determined by numerical integration. In principle, once the positions and velocities of
atoms in the finite ensemble within the simulation cell are known, all thermodynamic properties
can be readily extracted. Before we present a review of the methods used to simulate statistical
ensembles of atomic systems at larger length scales, such as the Molecular Dynamics and Monte
Carlo methods, we will first discuss some basic aspects of statistical mechanics. We will also briefly
review some of the most popular interatomic potentials employed in these atomistic simulations.

A statistical ’ensemble’ of simulated atoms contains atoms that are members of a desired
macrostate. This often defined by thermodynamic variables or constraints, such as temperature or
pressure. Many equivalent ensembles can be constructed with different microstates, but with the
same thermodynamic constraints of the macrostate. An ensemble is descried by the macroscopic
thermodynamic constraints, as follows:

1. A microcanonical ensemble is that where the internal energy, volume and number of atoms
are specified, and the system is isolated from its surroundings;

2. A canonical ensemble is one in which the temperature, volume, and number of atoms are
specified, and the system can exchange only heat with the surroundings;

3. A grand canonical ensemble is one in which the temperature, volume and chemical potential
are specified, and the system can exchange heat and atoms with the surroundings.

Consider an isolated system of atoms that has internal energy U , and that it can be divided
into two parts that can communicate only heat. The internal energy of the first part is E, while
that of the second part is Er, such that U = E + Er. The density of states of the first part is
ω(E), and that of the second part is ω(Er). Thus, the total number of microstates in the composite
system is: ω(E)ωr(Er)dEdEr. Since U is constant, the product representing the total number of
states will have a maximum for a particular value of the energy E, and such state would represent
thermodynamic equilibrium. Taking the logarithm of the product, and differentiating with respect
to E, we find that the maximum occurs when:

∂ lnω(E)

∂(E)
=
∂ lnωr(Er)

∂(Er)
(73)

The two sides of Equation (73) define a common property of each subsystem, which is now the
temperature, within a constant (i.e. Boltzmann’s constant).
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∂ lnω(E)

∂(E)
=

1

kT
(74)

Now, if we take one of the two parts of the total system to contain precisely one state at an
energy Ei, then the probability of finding the small subsystem in a microstate of energy Ei is:

Pi =
ωr(U − Ei)∑
i
ωr(U − Ei)

(75)

Since Ei << U , then we can expand:

ln[ωr(U − Ei)] = ln[ωr(U)] − ∂ lnωr

∂U
Ei + · · · (76)

and to first order, we have:
ωr(U − Ei) = ωr(U)e−Ei/kT (77)

and finally, we have for the probability Pi in Equation (75) takes the form:

Pi = e−Ei/kT /Z; Z =
∑

i

e−Ei/kT (78)

where Z is defined as the partition function, defined as the sum of Boltzmann’s factors for all
possible microstates of the N-atom system at specified temperature and volume. The concept of
the partition function is very powerful, and connects the microstates (obtained, for example from
MD or MC simulations), and the macrostate. For example, the total internal energy of the system
of atoms is given by:

U =
∑

i

EiPi =
1

Z

∑

i

Eie
−Ei/kT (79)

Since the partition function is a thermodynamic property, it will generally depend on two vari-
ables (say temperature and volume in the canonical ensemble case we are considering). This
property can be used to evaluate the summation in Equation (78), thus, we have:

(
∂Z

∂T

)

V
=

1

kT 2

∑

i

Eie
−Ei/kT (80)

and;

U =
kT 2

Z

(
∂Z

∂T

)

V
= kT 2

(
∂ lnZ

∂T

)

V
(81)

The entropy, S, of the canonical ensemble is defined as the ensemble average of lnPi, thus:

S = −k
[
∑

i

(
e−Ei/kT

Z

)(
− Ei

kT

)
−
∑

i

(
e−Ei/kT

Z

)
lnZ

]
(82)

which, when written in terms of the partition function, gives:

S = k lnZ + kT

(
∂ lnZ

∂T

)

V
(83)
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Other thermodynamic functions can be readily obtained from the partition function. The
Helmholtz energy, A, is simply obtained as:

A = U − TS = −kT lnZ (84)

and since the pressure P is related to the Helmholtz energy as: P = −
(

∂A
∂V

)
T
, then, we can obtain

the system pressure as:

P = kT

(
∂ lnZ

∂V

)

T
(85)

Finally, it can be easily shown from basic definitions that the enthalpy, H and the Gibbs free energy
G can be obtained easily from the partition function, as:

H = U + PV = kT

[
T

(
∂ lnZ

∂T

)

V
+ V

(
∂ lnZ

∂V

)

T

]

G = H − TS = −kT lnZ + V kT

(
∂ lnZ

∂V

)

T
(86)

3.2 Interatomic Potentials

3.2.1 Connections Between Quantum & Approximate Potentials

The direct use of DFT methods to perform full quantum molecular-dynamics simulations on real
materials is limited to a hundred or so atoms and a few picoseconds of simulation time. Thus,
the next step of coarse-graining the problem is to remove the electronic degrees of freedom by
imagining the atoms to be held together by some sort of glue or interatomic potential, thereby
allowing large scale atomistic simulations for millions of atoms and nanoseconds of simulation
time. Such simulations, employing approximate (or empirical) interatomic potentials, have been
extremely useful in investigating generic phenomena in simple systems. Empirical potentials involve
the fitting of parameters to a predetermined experimental or ab initio database which includes
physical quantities such as the lattice constant, the bulk modulus and elastic constants, the vacancy
formation energy, the surface energy, etc. The goodness of the potential is determined by fitting
to a small set of properties and then accurately predicting other properties not within the set used
for fitting its parameters. However, at the same time, they may not provide the desired physical
accuracy for many real complex materials of interest. For example, reliable interatomic potentials
are not usually available for multi-element materials and for systems containing substitutional or
interstitial alloying impurities. Interatomic potentials used in MD simulations may generally be
classified into three broad categories: (1) pair potentials; (2) effective medium potentials; and
(3) quantum-based potentials. In pair potentials, the electronic DOF are totally eliminated, and
are glued to nuclear DOF, thus atoms are represented by coordinates and momenta only. When
electronic DOF are averaged out and included into an electronic density function that depends on
the local environment of the atom, we have what is known as effective medium potentials. Implicit
recognition of the electronic DOF is given through the embedding function. Further recognition
of the electronic DOF is achieved through the introduction of reduced sets of coefficients based on
quantum mechanics in quantum-based potentials. We give here examples of interatomic potentials
belonging to the three main categories.
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3.2.2 Pair Potentials

Pair potentials are constructed such that the electronic DOF are elimnated, and the exact energy
of the system, Eexact is replaced by an approximate energy function, Eapprox. Thus, we map the
energy function of the system’s nuclear, Ri, and electronic,ri, coordinates, such that:

Eexact({Ri, ri}) −→ Eapprox({Ri}) (87)

Two common examples of pair potentials are the Lennard-Jones (Lennard-Jones 1924) and the
Morse (Morse 1929) potentials:

1. The Lennard-Jones Potential (Lennard-Jones 1924)
The Lennard-Jones potential is sometimes used to model the interatomic interaction in solids,
although it is best fit to the behavior of gases or fluids. The potential is given by:

V (R) = − A

R12
+

B

R6
(88)

where A and B are constants, determined by matching independent physical properties. For
example, if the equilibrium lattice constant in Cu is 0.36 nm, and its shear modulus is 50
GPa, let’s see how one can determine the two A and B.

E(R) = − A

R12
+

B

R6
, F = −∇E = −12A

R13
+

6B

R7
(89)

We now t take equilibrium distance to be the lattice constant=3.6×10−10 m, where the force
should be zero. This gives: B = 2A/R6

0. We can assume that the approximate area per atom
=≈ πR2

0, then:

σ =
∆F

πR2
0

= Eε = E
∆R

R

∣∣∣∣
R0

= E ' 1

πR0

∂F

∂R
(90)

However, E = 2(2 + ν)µ = 1.34 × 10−11 [Pa] = (πR0)/

{
156A
R14

0
− 42B

R8
0

}

Now, solving for A and B, we obtain: A = 1.38 × 10−132 and B = 1.17 × 10−69.

2. The Morse Potential (Morse 1929)
This potential, E(R), is characterized by three parameters: ε, a, and R0, and is given by:

E(R) = ε[e−2a(R−R0) − 2e−a(R−R0)] (91)

Compared with the simpler Lennard-Jones potential, the repulsion term here is more realistic,
but the attraction is less so. Furthermore, there is an extra parameter a, which can be used
to fit a third property. We can fit, for example, the lattice constant ,R0, the bulk modulus
B, and the cohesive energy Ecoh, using the three conditions:

[
dE

dR

]

R0

= 0 (92)

B = −V dP/dV = V ∂2E/∂V 2 (93)

Ecoh = [E]R0
(94)
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The Morse potential may be written as:

E(R) = ζ(ζ − 2), & ζ = exp [ρ(1 −R/R0)] (95)

where ε, ρ and R0 are adjustable parameters that determine the shape of the potential. First,
ε adjusts the depth of the potential (i.e the binding energy), R0 adjusts the equilibrium
interatomic separation, and ρ adjusts the range of the potential. This is shown in Figure (7).
Recently, an intermolecular potential for Bucky balls (C60 molecules), has been obtained,
with an effective value of ρ = 13.62. The alkali metals have longer-ranged interactions, for
example ρ = 3.15 has been suggested for sodium, while ρ = 3.96 for nickel. Take the case of
two isolated atoms, separated by 0.4 nm at equilibrium and have a cohesive energy of (- 5
eV). Then, ε = −5 eV, R0 = 0.4 nm.

Figure 7: The 3-parameter Morse potential

3.2.3 Effective Medium Potentials

This class of potentials include the embedded-atom (EAM) type (Daw and Baskes 1983, Daw and
Baskes 1984) or the Finnis-Sinclair (FS) type (Finnis and Sinclair (1984)) potentials for metals
that do not exhibit directional bonding character, and the Stillinger-Weber (SW) type (Stillinger
and Weber 1985, Ackland and Vitek 1990) or the Tersoff type (Tersoff 1986) potentials in covalent
materials, where the potential depends on the bond angle. In these types of potentials, we treat
the electronic degrees of freedom as a class of total energy functionals known as effective medium
and angular force schemes to incorporate environmental and angular dependencies. Thus, we map
the exact potential to an approximate representation as:

Eexact({Ri, ri}) −→ Eapprox({Ri, ri}) −→ Eapprox[ρ(ri), {Ri}] (96)

Approximate embedding potentials divide the energy into two contributions, one from core-core
repulsion that can be of a Coulomb or screened Coulomb type, while the second part represents
the energy cost for embedding an ion in a uniform electron gas, of local density ρ? Ab initio
calculations have shown that the electronic component of the embedding energy shows a minimum
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that is dependent on the type of embedded ion. We will discuss now one example of analytical
determination of embedded atom potentials. This is followed by the procedure for more accurate
numerical determination of the Embedded Atom Method, or EAM for short (Daw and Baskes 1983,
Daw and Baskes 1984), and finally a different approach for the embedding function based on the
Finnis-Sinclair procedure.

1. The Johnson potential - An Analytical Approach to EAM (Johnson 1988)
In the EAM, all atoms are viewed as embedded in the host consisting of all other atoms
(Foiles and Daw 1986), and the total energy is divided into an embedding energy, which is
electron-density dependent, and pair contributions. Various functional forms are developed
on the basis of known experimental or ab initio data:

Etot =
1

2

∑

ij

φ(Rij) +
∑

i

F (ρi)

F (ρ) = Eembed

ρ(i) =
∑

j 6=i

f(Rij)

φij(R) = Zi(R)Zj(R)/R (97)

φij(R) is the pair-interaction potential, which is usually taken as screened Coulomb, while
F (ρ) is the embedding energy.

Based on extensive experimental data and first principles calculations, the total energy was
found to be a function of the interatomic separation (a), in a simple form, known as the
Universal Binding Energy Relation (UBER) (Rose and Ferrante 1984), and given by:

Etot(a) = −Esub(1 + a∗)e−a∗

a∗ = (a/a0 − 1)/(Esub/9BΩ)1/2 (98)

Here, Esub is the absolute value of the sublimation energy at zero temperature and pressure.
a∗ is a measure of the deviation from the equilibrium lattice constant. B is the bulk modulus
of the material, a is a length scale characteristic of the condensed phase, which we will take
to be the fcc lattice constant, a0 is the equilibrium lattice constant, and Ω is the equilibrium
volume per atom.

An analytical procedure was developed by Johnson (1988), where the interatomic potential is
obtained analytically. In this procedure, the embedding function is deduced as the difference
between the total energy as given by the UBER and the total contributions of the pair part
of the potential. For an fcc metal, the energy of a given atom (without double counting, since
the fcc structure has 12 nearest neighbors) is Ei, given by:

Ei = F (ρi) + 6φ(Rnn) (99)

where Rnn is the equilibrium distance of the nearest neighbor, φ is the pair potential, F the
embedding function, and ρi the total electron density at atom i. If we rely on our knowledge of
the universal binding energy relationship, we can immediately deduce the embedding function
as follows:

F [ρ(R)] = Etot(R) − 6φ(R) (100)
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Johnson assumed the following forms for ρ(R) and φ(R):

ρ(R) = fe
−β( R

R0
−1)

(101)

φ(R) = φ0e
−γ( R

R0
−1)

(102)

where f, β, φ0 and γ are constants. With these forms, the embedding function can be analyt-
ically obtained, and is given by:

F (ρ) = −Ec

(
1 − α

β
ln

ρ

ρ0

)(
ρ

ρ0

)α
β

− 6φ0

(
ρ

ρ0

) γ

β

(103)

Force calculations in MD simulations must take into account the implicit dependence of the

embedding function on interatomic distances. The force on the ith atom due to the embedding
function is given by

fi = −
∑

i6=j

(
F ′(ρj)ρ

′
i + F ′(ρi)ρ

′
j

)
R̃ji (104)

where R̃ji is the unit vector connecting the ith and jth atoms.

2. The Daw-Baskes Potential - A Numerical Approach to EAM (Daw and Baskes 1983,
Daw and Baskes 1984)
In this widely used numerical procedure developed by Daw and Baskes, the electron density
is approximated by the superposition of atomic densities

ρi =
∑

j 6=i

ρa
j (Rij) (105)

where ρa
j (R) is the electron density contributed by atom j and computed from the Hartree-

Fock wave functions by

ρa(r) = Nsρ
a
s(r) +Ndρ

a
d(r)

ρa
s(r) =

|∑iCiψi(r) |2
4π

ψi(r) =
(2ξi)

(ni+
1
2
)

[(2ni)!]1/2
rni−1e−ξir (106)

where ns and nd are the number of outer s and d electrons, respectively, and ρs and ρd are
the densities associated with the s and d wave functions. The pair interaction can be written
in terms of effective charges as:

φij(r) = Zi(r)Zj(r)/r
Z(r) = Z0(1 + βrν)e−αr (107)

The embedding energy can be uniquely defined by requiring that the total energy of the
homogeneous fcc solid, computed using Equation (97) to agree with the universal equation
of state given by Equation ( 98). For a concrete example, let us consider the procedure to
evaluate the EAM potential for Ni. The wave function and other parameters for Ni and
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Table 1: EAM parameters for Ni & Cu

Z0 r β ν ns Atomic configuration

Cu 11.0 1.7227 0.1609 2 1.000 3d104s1

Ni 10.0 1.8633 0.8957 1 1.5166 3d84s2

Table 2: EAM wave function parameters for Ni

i ni ξi Ci

4s
1 1 54.88885 -0.00389
2 1 38.48431 -0.02991
3 2 27.42703 -0.03189
4 2 20.88204 0.15289
5 3 10.95707 -0.20048
6 3 7.31958 -0.05423
7 4 3.92650 0.49292
8 4 2.15289 0.61875

3d
1 3 12.67582 0.42120
2 3 5.43253 0.70658

Cu are given in Tables (2) and (2). Once the geometry surrounding an atom is defined
(i.e. distances and positions of nearest neighbors), Equation (98) is used to determine the
total energy. The effective charges are then calculated and used to determine the pair part
of the potential, using Equation (107). Now, we calculate the wave functions and their
contributions to the s- and d-bands for the electron density, using Equations (106) and (105).
The value of the embedding energy is calculated from Equation (97). Thus, we can create a
numerical relationship between the electron density and the embedding energy, which would
be equivalent to what Johnson assumed in Equation (103). Forces can be evaluated using
Equation (104), and the procedure repeated for all atoms in the MD simulation cell.

3. The Finnis-Sinclair Potential (Finnis and Sinclair 1984)

An embedding potential introduced by Finnis and Sinclair (1984) incorporates the band
character of metallic cohesion. Finnis and Sinclair replaced the charge Z in tight-binding
treatments with the sum of functions representing the valence electrons. The form of the
potential is a balance between this attractive contribution and core repulsion. One form of
the potential is given by:

E = En + Ee =
1

2

∑

ij

φij(Rij) −
∑

i

√
ρi (108)

The electron density for each atom is given by:
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ρi =
∑

i6=j

ρ(Rij) (109)

where ρ(Rij) =

{
(Rij − d)2, Rij < d

0, Rij > d
(110)

Potentials with Angular Dependence

The embedding-type potentials are applicable to metals that do not exhibit strong directional
bonding character. However, in covalently-bonded solids, such as Si and SiC, the crystal structure
is not closed packed, but is rather open. Certain angles between bonds designate the equilibrium
nature of the open structure. Empirical interatomic potentials have been developed to reflect this
fact, and the following two are among the most popular.

1. Stillinger-Weber angular potential (Stillinger and Weber 1985)

In the Stellinger-Weber potential, the total energy is expanded in terms of two-body V2 and
three-body V3 contributions.

Etot({Ri}) =
1

2

∑

i,j

V2(Rij) +
1

3!

∑

i,j,k

V3(Ri,Rj ,Rk) (111)

The two-body (pair potential) contribution to the total energy is given by a function of scaled
interatomic distances

V2(Rij) = εf2(
Rij

σ
) (112)

while the three-body contribution is expressed as a function of three vectors connecting be-
tween triplets of three atoms as

V3(Ri,Rj ,Rk) = εf3(
Ri

σ
,
Rj

σ
,
Rk

σ
) (113)

f2(R) =

{
A(BR−p −R−q)e[(r−a)−1] if r<a

0 otherwise
(114)

f3(Ri,Rj ,Rk) = h(Rij , Rik, θjik) + h(Rji, Rjk, θijk) + h(Rki, Rkj , θikj) (115)

h(Rij , Rik, θjik) = λe[γ(Rij−a)−1+γ(Rik−a)−1](cosθjik +
1

3
)2 (116)

The key ingredient in this formulation is the angular function h, which is selected to be a
function of the angle θijk between the vectors Rji and Rjk. λ, a, γ, A, B, and q are fitting
constants. It is noted that the angular term is minimized for θ ≈ 109.47◦, corresponding to
the tetrahedral angles that characterize the sp3 bonds of covalent materials.

2. Tersoff cluster functionals (1988) (Tersoff 1986)

The Stellinger-Weber potential does not have explicit functional dependence on the embed-
ding environment for participating atoms. Tersoff (1986) was the first to develop Si potentials
that account for environmental dependence. The total energy in his potential takes the form:

Etot =
1

2

∑

ij

[V r(Rij) + bijV
a(Rij)] (117)
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where the repulsive potential is given by

V r(Rij) = Ae−λ1Rij (118)

And the attractive potential by
V a(Rij) = Be−λ2Rij (119)

The environmental and angular dependence enter the potential through the function bij

bij = (1 + βnξn
ij)

−1/2n (120)

where the function ξij is given by

ξij =
∑

k 6=ij

fc(Rik)g(θijk) (121)

and fc(R) is a cutoff function that smoothly decreases from 1 → 0 as R→ Rc

The function g(θijk) contains the angular dependence, and takes the form

g(θ) = 1 +
c2

d2
− c2

d2 + (h− cosθ)2
(122)

3.2.4 Quantum-based Potentials - The Tight-Binding Method

There is a growing need to develop more accurate interatomic potentials, derived from quan-
tum mechanics, that can be applied to large-scale atomistic simulations. This is especially so for
directionally-bonded systems, such as transition metals, and for chemically or structurally com-
plex systems, such as intermetallic compounds and alloys. The Tight-Binding(Cohen, Mehl and
Papaconstantopoulos 1994, Mehl and Papaconstantopoulos 1996) and the self-consistent-charge
density functional Tight-Binding Molecular Dynamics (TBMD) approach is becoming widespread
in the atomistic simulation community, because it allows one to evaluate both ionic and elec-
tronic properties (Frauenheim, Porezag, Elstner, Jungnickel, Elsner, Haugk and Sieck 1998). The
success of TBMD stands on a good balance between the accuracy of the physical representation
of the atomic interactions and the resulting computational cost. TBMD implements an empir-
ical parameterization of the bonding interactions based on the expansion of the electronic wave
functions on a very simple basis set. Recently, novel analytic bond-order potentials have been
derived for atomistic simulations by coarse-graining the electronic structure within the orthogo-
nal two-center tight-binding representation (Pettifor 1989, Pettifor and Oleinik 1999, Pettifor and
Oleinik 2000). Quantum-based interatomic potentials for transition metals that contain explicit
angular-force contributions have been developed from first-principles, DFT-based generalized pseu-
dopotential theory (Moriarty 1988, Moriarty and Widom 1997, Moriarty, Belak, Rudd, Söderlind,
Streitz and Yang 2002).

The basic idea of the tight-binding method is that the electronic wave function of the solid can be
built up as a linear combination of the atomic wave functions centered on the atoms, following the
solution procedure of the Schrödinger equation for the hydrogen molecule. The coefficients of the
basis functions, αiβ , are selected such that the total energy is a minimum. The eigenvalues of the
resulting Hamiltonian matrix are the electronic contribution to the total energy. The method results
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in two main aspects: (1) the total energy of the system can be calculated directly without separation
into pair potentials and embedding energy; and (2) it gives the form of the pair functionals and
angular forces.

The electronic degrees of freedom are thus incorporated by the mapping

Eexact({Ri, rn}) −→ Eapprox({Ri, αi}) (123)

where {αi} are expansion coefficients that characterize the electronic wave function. The solid is
assumed to be formed by bringing its atoms into close proximity such that the atomic energy levels
of outer valence electrons are distributed as a result of the overlap between the wave functions of
adjacent atoms. We postulate a wave function for the total solid of the form

ψr =
N∑

i=1

n∑

α=1

aiαφα(r −Ri) (124)

or, written in a more compact form

|ψ >=
N∑

i=1

n∑

α=1

aiα|i, α > (125)

The outer sum runs over the number of atoms, N, in the solid, while the inner sum runs over the
number of orbitals per site. The representation of the wave function, |i, α >= φα(r − Ri) is for
the α orbital on site i. For the case of Si, for example, we make our expansion for the 3s and 3p
electrons only, with no contributions from inner shell electrons. The procedure attempts to find
the minimal set of wave functions, with no attempt for completeness. Now we write the energy
functional, Π, as a function of the wave function, ψ, or, as a function of the unknown expansion
coefficients

Π({aiα}) =< ψ|Ĥ|ψ > −E < ψ|ψ > (126)

Substituting now for the total wave function (Equations (124) and (125)), we have

Π({aiα}) =
N∑

i,j=1

n∑

α,β=1

(hαβ
ij − ESαβ

ij )a∗iαajβ (127)

where the matrices, hαβ
ij , and Sαβ

ij are given by

hαβ
ij = < i, α|Ĥ|j, β >=

∫

Ω

φ∗α(r − Ri)Ĥφβ(r − Rj)d
3r,

and

Sαβ
ij = < i, α|j, β >=

∫

Ω

φ∗α(r − Ri)φβ(r − Rj)d
3r. (128)

The matrix Sαβ
ij represents the degree of overlap between wave functions of adjacent sites, and is

hence called the overlap matrix. If the wave function basis set is selected to be orthogonal, then
Sαβ

ij = δijδαβ. Once the Hamiltonian matrix is formed (Equation (127)), the unknown coefficients
aiα can be obtained by minimization, thus

∂Π/∂a∗iα = 0,
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or∑

k′

(Hkk′ − Eδkk′)ak = 0. (129)

where the super index k runs from 1 to nN . Solution of the set of nN Equations (129) results in
a set of energy eigen values, Ek ≡ Eiα, and a set of coefficients ak ≡ aiα that determine the total
wave function itself.

Evaluation of the matrix elements is usually done by the so-called two-center approximation,
where contributions to the hαβ

ij arise only from the potential of two neighboring atoms i and j,
Vatom(r − Ri) and Vatom(r − Rj), respectively. Each matrix element depends on the separation
distance and orientation vector between two neighboring atoms. Since p-orbitals are spherically
symmetric, and p-orbitals have single lobes of the wave functions, oriented along x (px), y (py) or z
(pz), then various symmetries should arise in coupling factors, V, within the matrix elements. For
example, if the azimuthal rotational symmetry direction of individual atoms is aligned with the
bond direction, we would have the so-called σ-bond. This may arise because of coupling between
two s-orbitals, two p-orbitals, etc., and we would have factors like Vssσ, Vppσ etc. On the other
hand, π-bonds are denoted for couplings of orbitals such that the azimuthal symmetry directions of
individual atoms are normal to bond direction. Such is the case when we consider two pz-orbitals
of two neighboring atoms connected along the x-axis.

Solution of the eigenvalue problem stated above results in a spectrum of energies that covers a
wide span, and can be best represented as a histogram of delta functions, known as the electronic
Density Of States (DOS), which takes the form

ρ(E) =
∑

i

δ(E − Ei) (130)

Thus, the electronic contribution to the total energy is obtained by summing up all eigne values
of E, or rather by performing the integral:

Eel = 2

εF∫

−∞

Eρ(E)dE (131)

the factor of two accounts for up-down electron spin occupancy of each state. The total energy can
then be constructed by adding an effective pair potential for the interaction between neighboring
nuclei.

Etotal({Ri}) =
1

2

∑

ij

Veff (Rij) + 2

∫ εF

−∞
Eρ(E)dE (132)

Typical calculations proceed as follows. First, a computational cell is constructed with its set
of nuclear coordinates, Ri. Once we have these coordinates, we can determine the elements of the
interaction matrix, hαβ

ij , which describe the coupling between the αth orbital on site i with the βth

orbital on site j. The overlap matrix, Sαβ
ij , can be similarly determined. The full Hamiltonian is

thus known, and we can proceed to find the energy eigen values, and finally determine the DOS,
ρ(E).
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Moments of the density of states
The density of States is a distribution function of possible electronic energies, up to the Fermi level.
The DOS can be characterized by its moments, defined as

µn =

∫ ∞

−∞
Enρ(E)dE (133)

where µn is the nth moment of the DOS. For example, for d-band bonding, the first moment gives
the mean (or energy centroid of the d-band DOS), the 2nd gives the variance or energy width of the
d-band DOS, the 3rd represents the skewness of the d-band DOS, and the 4th is for its kurtosis.

Consider and s-band tight-binding application of these ideas, and use the notation |i, s >= |i >.
Then µ2(i) =< i|H2|i >. Utilizing the identity I =

∑
j |j >< j|, we find the second moment as

µ2(i) =
∑

j

h(Rijh(Rij) (134)

where h(Rij) =< i|H|j >. Similarly, for the third and fourth moment

µ3(i) =
∑

jk

h(Rijh(Rjk)h(Rki)

µ4(i) =
∑

jkl

h(Rij)h(Rjk)h(Rkl)h(Rli) (135)

We note here that moments can be written as products of matrix elements over paths starting and
ending on the same atom. This observation is stated as the moments theorem : the nth moment
of the DOS on an atom is determined by the sum over all paths comprised of n steps between
neighboring atoms that begin and end on the originating atom.

Rectangular Band Model and Pair Functionals
A simplification of the tight-binding procedure described earlier is the rectangular band model
of the DOS, and provides an understanding of the idea of pair functionals for cohesion in solids.
Instead of the tedious calculation of the DOF from its energy eigen values, this model assumes that
the DOF is constant over an energy width w, and is zero otherwise. The constant value assigned
to the DOS is determined from a known value, Nfull, which is the total number of electrons that
can be accommodated in the band.

Nfull = 2

∫ W/2

−W/2
ρ(E)dE (136)

Thus, ρ(E) = Nfull/2W . We can now determine the electronic contribution to the total energy as
a function of filling the band, or the number of electrons, Ne. The electronic contribution to the
total energy is

Eel =
Nfull

W

εF∫

−W/2

EdE (137)
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where the Fermi energy εF is dependent on band filling

Ne =
Nfull

W

∫ εF

−W/2
dE

εF = W (
Ne

Nfull
− 1

2
) (138)

which yields for the electronic energy

Eel = −NfullW

2
(
Ne

Nfull
)(1 − N − e

Nfull
) (139)

The cohesive electronic energy is a parabolic function of electron shell filling, maximizing half-
way between empty and full shells. This observation is consistent with the experimental data on
transition metals. If we apply the simple rectangular band model and calculate the second moment
of the DOS function, we find that µ2 = 5W 2/12, which demonstrates that the width of the band
is proportional to the square root of the second moment. The rectangular band model suggests
that the total energy can be written as a pair potential for the interaction between nuclei, and an
electronic bonding term that is proportional to the second moment. The 2nd moment arises from
all ”hopping steps” from the atom to its nearest-neighbors and back, which is just the number of
nearest neighbors, Z. This gives a binding energy that is proportional to

√
Zρ, as postulated by

the more empirical Finnis-Sinclair potential.

Etot =
1

2

∑

ij

φ(Rij) −
∑

i

α
√
µ2(i) (140)

where the constant α depends on band filling, and can be determined from ab initio calculations, or
used as a fitting parameter. It is noted that the second moment is of the pairwise additive nature,
and like the embedded atom method, the energy per bond will depend on the coordination number
Z.

Moments and Angular Forces
The connection between the moments and angular forces can be revealed by considering an expan-
sion of the total energy in terms of separate potentials for interactions of two-body, three-body,
four-body, etc. This takes the form

Etot =
1

2

∑

ij

V eff
2 (Ri, Rj) +

1

3!

∑

ijk

V eff
3 (Ri, Rj , Rk) +

1

4!

∑

ijkl

V eff
4 (Ri, Rj , Rk, Rl) + ... (141)

Let’s now consider a reference state for the electronic contribution of the total energy, expressed in
terms of the DOS moments in the form

Eref
el = E(µref

2 + µref
3 , ..., µref

n ) = 0 (142)

Deviations from this reference state (which can be assigned as the equilibrium state, i.e. Eref
el = 0)

result in changes in the DOS moments. The electronic energy contribution to the total energy
changes from Eref

el to Eel, and takes the form

Eel = E(µref
2 + δµ2, µ

ref
3 + δµ3, ..., µ

ref
n + δµn) (143)
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This form of Eel can be expanded in a Taylor series, and the difference in energy expressed as a
series of DOS moments

Eel =
∑

n

(
∂E

∂µn
)ref (µn − µref

n ) (144)

The energy of a state may then be expressed as

Eel =
∑

n

(
∂E

∂µn
)ref

n∑

k=1

∆µ(k)
n (145)

The notation ∆µ
(k)
n is used to represent the partial nth moment (relative to the reference state

moment) contributed from paths connecting k atoms. Comparing Equations (141) and (145), we
conclude that the two expressions would be equivalent, provided

V eff
n (Ri, Rj , ··, R(n)) = n!

Nm∑

n=2

(
∂E

∂µn
)ref∆µn (Ri, Rj , ··, R(n)) (146)

The main aspect of these types of many-body potentials is that contributions to the potential at an
atom contributed by doublet, triplet, etc. atom clusters inherit the characteristics of the 2nd, 3rd,
etc. moments of the DOS function. This is particularly important for the directional dependence
of these moments, as they give rise to angular forces.

3.3 The Molecular Dynamics (MD) Method

The basic premise of constructing empirical or semi-empirical interatomic potentials is that we can
eliminate all electronic degrees of freedom (DOF), thus treating atoms with Newtonian mechanics.
In this view of nature, we develop effective methods for dealing with such huge reduction of the
DOF by adding extra terms to interatomic interaction potentials. Of course, the validity of these
simplified interaction potentials must be checked by ascertaining the accuracy of simulating basic
known properties of the material.

The dynamic evolution of a system of atoms is governed by classical Newtonian mechanics,
where for each atom (i), the equation of motion is given by:

Mi
d2Ri

dt2
= Fi = −∇Ri

Φ (147)

which is derived from the classical Hamiltonian of the system:

H =
N∑

1

MiV
2
i

2
+ Φ (148)

An atom of mass Mi moves as a rigid particle at the velocity Vi in the effective potential of other
particles, Φ(Ri). The atomic force Fi is obtained as the negative gradient of the effective potential,
Fi = −∇Ri

Φ. Solving these 2nd order ordinary differential equations or all the atoms in a simulation
cell may appear simplistic. A physical simulation involves proper selection of numerical integration
scheme, employment of appropriate boundary conditions, and stress and temperature control to
mimic physically meaningful thermodynamic ensembles.
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The numerical integration scheme, which is performed either by explicit or implicit methods,
should be both stable and computationally efficient. The simple Euler scheme is not appropriate
for MD simulations because it lacks numerical stability. In the explicit Verlet’s leap-frog method,
the equation of particle motion is split into two first-order equations:

dRi

dt
= Vi,

dVi

dt
= F(Ri)/Mi (149)

Based on the half-step leap-frog method, this set of equations is converted for small time increment
delta t to:

Ri(t+ δt) = Ri(t) + δtVi(t+
1

2
δt) (150)

Vi(t+
1

2
δt) = Vi(t−

1

2
δt) + δt

Fi

Mi
(151)

The Verlet algorithm is very popular in MD simulations because it is stable, memory-efficient,
and allows for a reasonably large time-step. Another popular implicit integration method for MD
simulations is the predictor-corrector scheme, in particular, Gear algorithm (Gear 1971).

Similar to the numerical integration scheme, proper use of boundary conditions is crucial to ob-
taining a physically meaningful MD simulation. The boundary of a simulation cell is usually within
close proximity to each simulated atom, because of limited computational power. Simulations for
one billion atoms represent the upper limit of computation today with simple interatomic potentials
(e.g. (Lennard-Jones 1924)). Total simulation times are typically less than one nano-second as a
result of short integration time steps in the femto-second range. The boundary of a simulation cell
may not be a real physical interface, rather it is merely the interface of the simulation cell and
its surroundings. Various boundary conditions are used in mechanics simulations. Since disloca-
tions dominate the linking of nano- and micro- mechanics, the following presentation of boundary
conditions focuses on those boundary conditions relevant to the long-range strain fields of dislo-
cations. These boundary conditions include: the rigid boundary condition (Kuramoto, Ohsawa
and Tsutsumi 2000), periodic boundary condition (Kido, Maruyama, Niita and Chiba 2000), direct
linking of atomistic and continuum regions (Ortiz and Phillips 1999), and flexible (Green’s function)
boundary condition (Sinclair 1971, Woo and Puls 1976, Hoagland, Hirth and Gehlen 1976, Rao,
Hernandez, Simmons, Parthasarathy and Woodward 1998).

The rigid boundary condition is probably the simplest. According to this condition, boundary
atoms are fixed during molecular dynamics simulations. For simple dislocation configurations, the
initial strain field, say of an infinitely long straight dislocation, is imposed on all atoms in the
simulation cell. During subsequent simulations, boundary atoms are not allowed to relax. This
rigidity of the boundary condition naturally leads to inaccuracy in the simulation results. The
inaccuracy also exists in the application of the periodic boundary condition. According to this
condition, the simulation cell is repeated periodically to fill the entire space. When one dislocation
is included in the simulation cell, infinite number of its images are included in the entire space
because of the infinite repetition of the simulation cell. Modifications have been made to include
dipoles in a simulation cell, and to subtract the image effects. However, it is difficult to extend
such modifications to general dislocation configurations, which are more complex.

In contrast to the two approximate boundary conditions, the direct linking and flexible boundary
conditions can be rigorous. The direct linking of atomistic and continuum region (Ortiz and Phillips
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1999) aims at a seamless bridging of two different scales. This idea has been extended to include the
direct linking of atomistic and electronic structure regions (Abraham, Broughton, Bernstein and
Kaxiras 1987). Once numerically robust and efficient, the direct linking scheme should be the most
reliable and desirable boundary condition. At present, the other rigorous scheme - flexible boundary
condition - is more commonly used in dislocation simulations. This scheme has gone through the
implementations in two and three dimensions. In the 1970’s, the two-dimensional version of this
boundary condition was implemented (Woo and Puls 1976, Sinclair 1971, Hoagland et al. 1976),
allowing the simulation of a single straight dislocation. In these simulations, periodic boundary
conditions are applied along the dislocation line. On the plane normal to the dislocation line, the
simulation cell is divided into three regions. The innermost region is MD region, in which atoms
follow Newtonian dynamics according to the MD method outlined earlier. The intermediate region
is the flexible region (or Green’s function region), in which the force on each atom is calculated, and
then used to generate displacements of all atoms in the simulation cell using the Greens’ function
of displacement. Since periodic boundary condition is applied along the dislocation line, line forces
are calculated in the flexible region, making the displacement two-dimensional. The outermost
region contains atoms that serve as background for force calculations in the flexible region. As a
result of renewed interest in dislocation dynamics, flexible boundary conditions have been extended
to three dimensions, and are often referred to as the Green’s function boundary conditions (Rao
et al. 1998). Flexible or Green’s function boundary conditions have clear advantages in allowing
for full relaxation of one or a few dislocations in a simulation cell, without suffering from the
artifacts of image dislocations. However, Green’s function calculations are time-consuming, limiting
applications of the Green’s function boundary condition. Recently, a tabulation and interpolation
scheme (Golubov, Liu, Huang and Woo 2001) has been developed, improving the computational
efficiency by two orders of magnitude, yet maintaining the accuracy of linear elasticity. With
this improvement, the Green’s function boundary conditions work well for static simulations of
dislocations. However, they are not applicable to truly dynamic simulations. During dislocation
motion, elastic waves are emitted, and when they interact with the simulation cell boundaries or
borders, they are reflected and can lead to interference or even resonance in the simulation cell.
Approximate approaches (Ohsawa and Kuramoto 1999, Cai, de Koning, Bulatov and Yip 2000)
have been proposed to damp the waves at the boundary, but a fully satisfactory solution is still not
available.

In addition to the numerical integration and boundary condition issues, successful MD simula-
tions rely on the proper control of thermodynamic variables: stress and temperature. When the
internal stress, as derived from interatomic interactions, is not balanced by the external stress, the
simulation cell deforms accordingly. At small stress levels, this response is consistent with linear
elasticity. Under general stress conditions, the formulation of (Parrinello and Rahman 1981) pro-
vides a mechanism to track the deformation. In this formulation, the three vectors describing the
simulation cell shape are equated to position vectors of three imaginary atoms. The driving force
of the imaginary atoms is the imbalance of internal and external stresses, and the displacement of
those atoms are governed by Newton’s equations of motion. This formulation works well when an
equilibrated stress state is sought. However, large fluctuations in the deformation are unavoidable
according to the Parrinello-Rahman method; the lattice constant may fluctuate by about 0.5%
around its equilibrium value. This large fluctuation may introduce artifacts in the simulation of
kinetic process, and caution should be exercised. The other thermodynamic variable, temperature,
is controlled through the kinetic energy or velocities of all atoms. Using frictional forces to add
or subtract heat, the Nose-Hoover method (Nose 1984, Hoover 1985) provides a mechanism of
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controlling the temperature of a simulation cell. When the temperature is uniform in space and
constant in time, little difficulty exists. When the temperature changes, however, the strength of
the frictional force dictates the transition time. A fast transition is usually necessary because of the
short time reachable in MD simulations. However, such a transition is generally too fast compared
to realistic processes. This transition problem exists in other temperature control mechanisms,
such as velocity scaling or introduction of random forces.

The implementation and practice of MD simulations are more involved than the conceptual
description alluded to here. A successful simulation depends on three major factors:

1. the computational implementation of the MD method;

2. the construction of accurate interatomic potentials; and

3. the analysis of massive data resulting from computer simulations.

In the following, we briefly present key concepts in the numerical implementation of MD meth-
ods, and then discuss salient aspects of the last two topics.

3.3.1 Choice of an Interatomic Potential

In general, interatomic potentials use in MD simulations are empirical or semi-empirical, and
thereby require fitting parameters. Simpler potentials, like the Lennard-Jones potential (Lennard-
Jones 1924) and Morse potentials (Morse 1929), have very few fitting parameters, which can be
easily determined from crystal properties. On the other hand, these potentials suffer from non-
transferability. Since these potentials are fitted to only a few perfect crystal properties, their
applicability in studying defects is by default questionable. The more sophisticated potentials,
like the EAM - particularly the force matching approach (Ercolessi and Adams 1994), use sev-
eral or many defect properties to determine the EAM functions, in either analytical or tabular
form. Material properties, of either the perfect crystal or defected structures, are obtained from
ab initio calculations and reliable experiments. It is worth pointing out that these interatomic
potentials apply for specific classes of materials. Strictly speaking, pair potentials are applicable to
simulations of rare gas behavior. However, applications to simple metal systems can also provide
qualitative guidance. The EAM type of potential has proven to be a good choice for simple metals.
Applications to metals like aluminum, copper, silver, and iron (except its magnetic properties)
have been very successful. The radial function form of the EAM is computationally advantageous.
However, this advantage is accompanied by the inability to describe covalent systems, in which
angular dependence dominates. In studying silicon, diamond carbon and other covalent systems,
angular dependent potentials, particularly the Stillinger-Webber (Stillinger and Weber 1985), the
Tersoff (Tersoff 1986), and the bond-order potentials (Pettifor 1989) are among the leading can-
didates. A modification of the EAM has been proposed to include the angular dependence by
(Baskes 1987), and applied to SiC by (Huang, Ghoniem, Wong and Baskes 1995); the modification
by (Pasianot, Farkas and Savino 1991) is similar. Potentials that have quantum mechanical basis,
such as the generalized pseudopotential (Moriarty 1988, Moriarty 1994), the bond order potential
(Pettifor 1989), and the inversion method (Chen 1990, Zhang, Xie, Ge and Chen 1997) have also
been used for greater accuracy.
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3.3.2 Temperature and Pressure Control

In molecular dynamics simulations, we are usually interested in systems that can be described by
global thermodynamic parameters, such as temperature, pressure energy, etc.. However, numerical
integration of the system of equations does not guarantee that the overall system attains a specific
thermodynamic state, and most often, we require temperature or pressure control. For a system
to be simulated at a constant desired temperature, a typical simulation proceeds as follows: (1)
we first assign velocities to all atoms in the system at a low temperature; (2) we then heat the
system up to a desired temperature; (3) following the heat-up phase, we equilibrate the system for
a short period of time; (4) and finally, we continue the simulation, but reset the simulation time to
zero from that point on. During heating and equilibration, the temperature of the system is kept
constant as described below. Dependent on how we apply simulation constraints, we would have
different kinds of statistical ensembles. The NVE ensemble is the easiest one to be have, and it
requires that the number of atoms, system volume and energy remain constant. The temperature of
an NVE ensemble will fluctuate without modification. However, if the simulation must be carried
on under certain temperature or pressure constraints, the NVE ensemble is not suitable anymore,
and we have to adopt an NVT ensemble, NPT, or NPH ensemble instead (Field 1999). Here,
T is for constant temperature, N umber of atoms, V system volume, E system energy, P system
pressure, and H system enthalpy.

Constant-Temperature Algorithms
The essential idea behind all temperature or pressure control algorithms is that we simulate a
system that undergoes additional interactions, or is coupled to an external thermodynamic bath.
The energy can be transferred between the system and the external bath, which makes it possible
to control the temperature of the system (Berendsen 1984).

The Andersen procedure (Andersen 1980) is an early algorithm that suggests that, at certain
time intervals during a simulation, the velocities of a randomly chosen particle could be reassigned
on the basis of the Maxwell-Boltzmann distribution. Here, we imagine that the atom collides with
one of the particles in a heat bath. However, due to velocity reassignment, energies are not smooth
but discontinuous over time.

In the Nosé-Hoover method (Nosé and Klein 1983, Nose 1984, Hoover 1985), we consider the
system to be coupled to an external bath. The basis of this method is to introduce an extra,
thermostating degree of freedom that represents the external thermal bath. In the original Nosé-
Hoover method, there is a single bath coordinate, η, and an associated momentum, pη. The
equations of motion of the combined system become:

Ṙ = M−1P (152)

Ṗ = F(R) − pη

Q
P (153)

η̇ =
pη

Q
(154)

ṗη = PTM-1P −NdfkBT (155)

where R, M, P, and F are coordinates, mass, momentum and force arrays of the system. Ndf is
the number of coordinate degrees of freedom. Q is the mass of the thermostat, which is has units
of mass times length squared, and determines the size of the coupling. Large values of Q lead to
approximate constant-energy of the system, while small values of Q lead to large coupling and poor
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equilibration. pη is the momentum of the bath. When its value is positive, the kinetic energy of
the system decreases, while when this value is negative, the kinetic energy increases. The value of
pη is determined by equation (155) for the difference between the actual and desired temperature.

Another widely followed approach is to use Langevin equations as a stochastic analogues of
Newton’s equations of motion (i.e Langevin dynamics). This equation can describe the interaction
between an atom and a thermal bath quite well. It has two extra force terms: a random force and
a frictional force that is proportional to the velocity of the particle. The random force buffets the
particle about, while the frictional force dissipates any excess kinetic energy.

Constant-Pressure Algorithms
The idea behind pressure-control algorithms is similar to the temperature-control approach. The
main difference is that pressure control modifies the coordinates and the volume of the system.
One of the first algorithms for pressure control was also proposed by Andersen(Andersen 1980),
where the volume of the simulation box, V, is introduced as an additional variable in the equations
of motion:

Ṙ = M−1P +
1

3

V̇

V
R (156)

Ṗ = F(R) − 1

3

V̇

V
P (157)

V̈ =
1

W
(P − PB) (158)

where P is the instantaneous pressure and PB is the reference pressure. W is the effective mass of
the volume degree of freedom, with units of mass times length to the fourth power.

3.4 The Kinetic Monte Carlo (KMC) Method

The Monte Carlo (MC) technique is a statistical method for solving deterministic or probabilistic
problems, by sampling from random distributions utilizing concepts of probability theory. A simple
method for generation of random numbers according to a given distribution function is the inversion
method (James 1990). In this approach, if the distribution function is normalized to obtain a
probability density function (PDF), p(x), we can determine the probability that the random variable
x′ is less than an arbitrary x by integrating the PDF from the minimum value to x. The integral of
the (PDF) is called the cumulative distribution function (CDF), C(x). When the CDF is equated
to a uniformly distributed random number ξ, C(x) = ξ, the resulting solution for x gives the
desired distribution function. If the PDF, p(x), cannot be easily inverted analytically, sampling
can be performed by the Von Neumann rejection technique. Another method to achieve the same
result is known as importance sampling, and is a combination of the previous two methods. Here,
we replace the original distribution function, p(x), by an approximate form, p̃(x), for which the
inversion method can be applied. Then we obtain trial values for x with the inversion technique
following p′(x). Finally, we accept trial values with the probability proportional to the weight w,
given by w = p(x)/p̃(x). The rejection technique has been shown to be a special case of importance
sampling, where p′(x) is a constant (James 1980).

When the configurational space is discrete, and all rates at which they occur can be determined,
we can choose and execute a single change to the system from the list of all possible changes at
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each MC step. This is the general idea of the Kinetic Monte Carlo (KMC) method ((Doran 1970),
(Beeler 1982), (Heinisch 1995)). The main advantage of this approach is that it can take into
account simultaneous different microscopic mechanisms, and can cover very different time scales.

3.4.1 Elastic Representation of Defects

Although the interaction between atomic-size defects requires extensive MD or even ab initio calcu-
lations, the theory of elasticity can be utilized to simplify such calculations. Defect-defect interac-
tion does not generally result in significant local deformation, and hence linear elasticity is expected
to give accurate results. This approach has been successfully used to describe static defect-defect
interactions.(Kroupa 1966, Siems 1968, Bullough and Hardy 1968)

Following Kröner (Kröner 1964) and Teodosiu,(Teodosiu 1982) nano-scale defects exert forces
on the atoms in theirs vicinity, which are different from those acting on these atoms in a perfect
lattice. Let Pv denote the additional forces exerted by a nano-defect centred at x′ on the atom
situated at x′ + lv. According to the definition of Green’s function, the force system Pv generates
in an infinite elastic medium the displacement field

um(x) =
N∑

v=1

Gms(x − x′ − lv)P v
s (159)

where G is Green’s tensor function of the elastic medium, while N is the number of atoms on which
extra forces are exerted. Theoretically, N = ∞, but, as Pv decays very rapidly when ‖lv‖ → ∞, it
is usually sufficient to take into account only the forces employed on the first and second nearest
neighbors.

Expanding G(x − x′ − lv) in a Taylor series about x − x′ leads to

Gms(x − x′ − lv) =
∞∑

k=0

1

k!
Gms,q′1q′2...q′

k
(x − x′)lvq1

lvq2
...lvqk

(160)

where (·),m′ = ∂(·)
∂x′

m
. The expansion (160) converges only for sufficiently small values of ‖lv‖, i.e.

only if the application points of the forces Pv are sufficiently close to the nano-defect.

Substituting (160) into (159), we have

um(x) =
∞∑

k=0

1

k!
Gms,q′1q′2...q′

k
(x − x′)P (k)

q1q2...qks (161)

where P(0) =
∑N

v=1 Pv, P
(0)
s =

∑N
v=1 P

v
s , is the resultant force, and

P(k) =
N∑

v=1

lvlv...lv︸ ︷︷ ︸
k

Pv, P (k)
q1q2...qks =

N∑

v=1

lvq1
lvq2
...lvqk

P v
s (162)

is the multipolar moment of the k-th order, k = 1, 2, ..., of the system of additional forces Pv

exerted by the nano-defect on its surroundings. In particular, the following tensors are called
dipole moment, quadrupole moment and octopole moment, respectively,

P(1) =
N∑

v=1

lvPv, P(2) =
N∑

v=1

lvlvPv, P(3) =
N∑

v=1

lvlvlvPv, (163)
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Applying the differential operator

1

k!
P (k)

q1q2...qks

∂k

∂x′q1
∂x′q2

...∂x′qk

(164)

to the equilibrium equation of a unit point force

CijmnGms,jn(x − x′) + δisδ(x − x′) = 0 (165)

where Cijmn is the elastic tensor and δis is the Kronecker δ, and comparing the results with (161),
we can see that the action of a nano-defect on the elastic medium is equivalent to that of a body
force field, which consists of force dipoles, quadrupoles, octopoles, etc. applied at the center of the
defect, namely:

fi(x) =
∞∑

k=0

P̃
(k)
q1q2...qkiδ,q′1q′2...q′

k
(x − x′) (166)

where

P̃ (k)
q1q2...qks =

1

k!
P (k)

q1q2...qks (167)

the strengths of the multipolar forces, fi(x), being completely determined through (167) by the
multipolar moments associated with the nano-defect.(Teodosiu 1982) It should be noted that the
resultant force and couple exerted by a nano-defect on its surroundings are zero. Thus, the equi-
librium condition implies

N∑

v=1

Pv = 0,
N∑

v=1

lv × Pv = 0 (168)

The last relation may be rewritten as

N∑

v=1

εknsl
v
nP

v
s = εknsP

(1)
ns = 0 (169)

where εkns is so called permutation tensor. The dipole moment P(1) must be a symmetric tensor,
and conditions (168) are equivalent to:

P(0) = 0, P(1) = (P(1))T (170)

Introducing (170) into (161), we obtain:

um(x) =
∞∑

k=0

(−1)k

k!
Gms,q1q2...qk

(x − x′)P (k)
q1q2...qks (171)

Equation (171) shows that the elastic field produced by a nano-defect in an infinite elastic medium
is completely determined by the multipolar moments P(k), k = 1, 2, ..., provided that Green’s tensor
functions of the medium are known.

Since the elastic field of a nano-defect is characterized by its multipolar moments, the main idea
of describing the elastic field of a defect reduces to the evaluation of these quantities by solving
the equation system (171), with the displacement field u(x) acquired from Molecular Dynamics or
Statics simulations. As a first approximation, we now only consider the force system Pv exerted on
the center of the defect and the first term in the Taylor expansion (171), i.e. the dipole moment.
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Suppose that the displacement of each and every lattice atom is already known from atomistic
calculations. The least squares method can then be used to determine the equivalent point force
dipolar system, i.e. fjk, which is to act at the center of the defect. If the real displacement field
(e.g. obtained from atomistics) is denoted by ũ(x), we define the residual function

Π =
N∑

m=1

‖u(x) − ũ(x)‖2 =
N∑

m=1

[u(x) − ũ(x)] [u(x) − ũ(x)] (172)

where N is the number of points whose displacements are already known. The best fitting value of
fjk minimizes the residual Π:

∂Π

∂fjk
= 0 (173)

The interaction energy, Φint, between two nano-defects can be shown to take the form: (Teodosiu
1982)

Φint = −f · ∇ũ(x) = −fij ũj,i(x) (174)

where fij is the force dipole used to represent the nano-defect at x, and ũ(x) is the displacement
field induced by the defect at x′, which can also be described by a force dipole tensor f̃ . Substituting
the force dipole term of (171) for the displacement field produced by one of the defects into (174),
we obtain:

Φint = −fij f̃lkGjk,li(x − x′) (175)

It should be noted that this first order description of nano-defects provides a good approximation
only if the separation distance between defects is large enough and the geometry of the defect is
rather simple.

3.4.2 Computational Model

The jump frequency (or the probability per unit time) for a possible jump of a SIA cluster, i, to
take place is given by:

ri = ω0 exp(− Ei

kBT
) (176)

where ω0 is a pre-exponential factor of the defect cluster, kB Boltzmann constant, Ei the ’effective’
activation energy for jumps of the cluster, and T is the absolute temperature. In the present work,
we used MD results for the values of Ei for small defect clusters.(Osetsky, Bacon, Serra, Singh and
Golubov 2000a) The first step in KMC simulations is to tabulate the rate at which an event (i) will
take place anywhere in the system, ri. The probability of selecting an event is equal to the rate at
which the event occurs relative to the sum of all possible event rates. Once an event is selected,
the system is changed correspondingly, and the list of events that can occur at the next KMC step
is updated. Therefore, at each KMC step, one event denoted by m is randomly selected from all

possible M events. Define r̃i = ri/
M∑
i=0

ri as the normalized event rate, where ri is the actual rate

of occurrence of an event i. If ξ is a random number uniformly distributed in the range [0, 1], then

selection of an event m follows from the following condition:
m−1∑
i=0

r̃i < ξ <
m∑

i=0
r̃i. After an event

is selected and executed, the total number of possible events, M , and the sequence in which the
events are ordered, will change.
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The reciprocal of an atomic jump probability per unit time is a residence time for a defect
cluster that moves by that specific type of jump. Since the jump probabilities of all different types
of jumps are independent, the overall probability per unit time for the system to change its state
by any type of jump step is just the sum of all possible specific jump probabilities. Therefore, the
residence time that would have elapsed for the system in a specific configuration is the reciprocal
of the overall jump probability rate

∆t =
1

M∑
i=0

ri

(177)

which is independent of the chosen transition. If ξ2 is a random number from 0 to 1, the elapsed
time for a particular transition is given by:(Battaile and Srolovitz 1997)

∆t =
− ln ξ2

M∑
i=0

ri

(178)

The system is then advanced to the final state of the chosen transition and the process is
repeated. So far, all KMC computer simulations for microstructure evolution under irradiation
have not considered the influence of the internal and applied stress fields on defect motion (e.g.
Refs. (Soneda and Diaz de la Rubia 1998) and(Heinisch and Singh 1997)). Although explicit elastic
interactions are not included in existing KMC treatments (e.g. in the ALSOME (Heinisch and
Singh 1997) or BIGMAC (Soneda and Diaz de la Rubia 1998) codes), in most realistic situations
interactions between dislocations and point defects play a key role in determining the effects of
radiation on mechanical properties. The present KMC method accounts for elastic interactions
amongst SIA clusters, nanovoids and dislocations. The numerical method developed by Ghoniem
(Ghoniem 1999a) and Ghoniem and Sun (Ghoniem and Sun 1999b) is employed to evaluate the
interaction between small defect clusters and slip dislocation loops. The interaction energy of two
dislocation loops over the volume V is expressed as:

EI =

∫

V
σ

(1)
ij ε

(2)
ij dV (179)

in which σ
(1)
ij is the stress arising from the first dislocation and ε

(2)
ij the strain originating in the

other. For the present study, if the second loop (defect cluster) is assumed to be infinitesimal, the
interaction energy can be simplified to (Kroupa 1966)

EI = δA(2)n
(2)
i σ

(1)
ij b

(2)
j (180)

where n
(2)
i is the unit normal vector to the defect cluster habit plane of area δA(2). Substituting the

expressions of σij given in Ref.(Huang and Ghoniem 2002a) into (180) we can readily compute the
interaction energy of the cluster, designated with the superscript (2), and the slip loop, of Burgers

vector b
(1)
n . For simplicity, we assume that the stress tensor of grown-in (slip) dislocation loops is

constant over the cross-section of a small point-defect cluster. In case we treat one single vacancy
or interstitial atom as a center of dilatation, the interaction energy simplifies to

EI = −4

9
πr30ε

(2)
ii σ

(1)
jj (181)
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where ε
(2)
ii is the dilatation and r0 is the effective radius of a point defect. The elastic representation

of defects introduced in the previous section was applied and Kroupa’s solution (Kroupa 1966) for
the elastic field around an infinitesimal dislocation loop is utilized to determine the interaction
between SIA clusters and vacancies.

We explicitly incorporate here the effects of elastic interactions between SIA and vacancy clusters
themselves (cluster-cluster type), and between defect clusters and dislocations (dislocation-cluster
type). SIA clusters are directly produced on the periphery of neutron collision cascades, and they
may contain from a few atoms up to tens of atoms in the near vicinity of the cascade.(Bacon, Gao
and Osetsky 2000) Such clusters are extremely mobile, and migrate predominantly along highly-
packed crystallographic directions, with migration energies of less than 0.1 eV.(Soneda and Diaz
de la Rubia 1998, Bacon et al. 2000) Small SIA clusters may also spontaneously change their
Burgers vector, and thus have the flexibility to translate along various crystallographic directions if
their motion is not obstructed by internal strain fields. Since MD simulations have shown that the
majority of SIA clusters have the form of mobile (glissile) perfect dislocation loops, we represent
here SIA clusters as small prismatic, rigid and circular dislocation loops. We approximate vacancy
clusters produced in cascades as small spherical voids, with an effective radius of rv = 3

√
3NΩ/4π,

where Ω is the atomic volume and N the number of vacancies in the cluster. The temperature
dependence of the jump frequency of SIA clusters diffusion has been given by (176). The influence
of other defects and the external stress on one SIA or vacancy cluster is given by the stress field σij .
For an infinitesimal dislocation loop, the interaction energy, Eint, is given by Eqn. (180). Similarly,
for a vacancy cluster, the interaction energy is obtained from (181). The dilation, εjj , in this case,
is given by εjj = q

K = GδV
πa3

0K
, where 3K = 3λ+ 2G is the bulk modulus.

The total cluster activation energy for migration is then given by:

Ẽm = Em + ∆Eint (182)

where Em is the activation energy in a perfect crystal, and ∆Eint the difference in the interaction
energy of a defect cluster placed at two neighboring equivalent positions in the crystal.

4 Computational Mesomechanics

4.1 Introduction

Studies of the mechanical behavior of materials at a length scale larger than what can be handled
by direct atomistic simulations, and smaller than what allows macroscopic continuum averaging
represent particular difficulties. When the mechanical behavior is dominated by microstructure
heterogeneity, the mechanics problem can be greatly simplified if all atomic degrees of freedom
were adiabatically eliminated, and only those associated with defects are retained. Because the
motion of all atoms in the material is not relevant, and only atoms around defects determine the
mechanical properties, one can just follow material regions around defects. Since the density of de-
fects is many orders of magnitude smaller than the atomic density, two useful results emerge. First,
defect interactions can be accurately described by long-range elastic forces transmitted through
the atomic lattice. Second, the number of degrees of freedom required to describe their topological
evolution is many orders of magnitude smaller than those associated with atoms. These observa-
tions have been instrumental in the emergence of meso-mechanics on the basis of defect interactions
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by Eshelby, Kröner, Kossevich, Mura and others (see references (Eshelby 1957), (Kröner 1958b),
(Kröner 1958a), (Mura 1968), (Mura 1982), and (Kossevich 1999)). Thanks to many computational
advances during the past two decades, the field has steadily moved from conceptual theory to prac-
tical applications. While early research in defect mechanics focused on the nature of the elastic
field arising from defects in materials, recent computational modelling has shifted the emphasis on
defect ensemble evolution.

Two of the most fascinating features of micro-scale plasticity are the spontaneous formation
of dislocation patterns, and the highly intermittent and spatially localized nature of plastic flow.
Dislocation patterns consist of alternating dislocation rich and dislocation poor regions usually
in the µm range (e.g. dislocation cells, sub-grains, bundles, veins, walls, and channels). On the
other hand, the local values of strain rates associated with intermittent dislocation avalanches
are estimated to be on the order of 1-10 million times greater than externally imposed strain
rates (Neuhäuser 1983, Zaiser 2001). Understanding the collective behavior of defects is important
because it provides a fundamental understanding of failure phenomena (e.g. fatigue and fracture).
It will also shed light on the physics of elf-organization and the behavior of critical-state systems
(e.g. avalanches, percolation, etc.)

In an attempt to resolve these observations, two main approaches have been advanced to model
the mechanical behavior in this meso length scale. The first is based on statistical mechanics
methods (Walgraef and Aifantis 1985, Gregor and Kratochvil 1990, Kratochvil, J. and Saxlov̀a
1992, Saxlov̀a, Kratochvil and Zatloukal 1997, Hähner, Bay and Zaiser 1998, Zaiser, Avlonitis and
Aifantis 1998, El-Azab 2000, Thomson, Levine, Shim and Savage 2002). In these developments,
evolution equations for statistical averages (and possibly for higher moments) are to be solved for
a complete description of the deformation problem. The main challenge in this regard is that,
unlike the situation encountered in the development of the kinetic theory of gases, the topology of
interacting dislocations within the system must be included (El-Azab 2000). The second approach,
commonly known as Dislocation Dynamics (DD), was initially motivated by the need to understand
the origins of heterogeneous plasticity and pattern formation. An early variant of this approach (the
cellular automata) was first developed by (Lepinoux and Kubin 1987), and that was followed by the
proposal of DD (Ghoniem and Amodeo 1988a, Ghoniem and Amodeo 1988b, Amodeo and Ghoniem
1990b, Amodeo and Ghoniem 1990a). In these early efforts, dislocation ensembles were modelled
as infinitely long and straight in an isotropic infinite elastic medium. The method was further
expanded by a number of researchers (Guluoglu, Srolovitz, LeSar and Lomdahl 1989, Lubarda and
Needleman 1993, Barts and Carlsson 1995, Barts and Carlsson 1998, Wang and LeSar 1995), with
applications demonstrating simplified features of deformation microstructure. We will describe the
main features of these two approaches in the following.

4.2 Statistical Mesomechanics

Because of the high density of dislocations and the strong nature of their interactions, direct com-
puter simulations of inhomogeneous plastic deformation and dislocation patterns is still unattain-
able. Even if direct computer simulations are successful in the description of these collective phe-
nomena, it is very desirable to obtain global kinetic or thermodynamic principles for understanding
the self-organization associated with plasticity at the micro-scale. To attain these objectives, and to
enable a direct link with continuum deformation theory, the statistical mechanics approach has been
advanced (Neumann 1971, Walgraef and Aifantis 1985, Ghoniem, Matthews and Amodeo 1990, Gre-
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gor and Kratochvil 1990, Kratochvil et al. 1992, Hähner 1996, Saxlov̀a et al. 1997, Zaiser and
Hähner 1997, Hähner et al. 1998, Zaiser et al. 1998, El-Azab 2000, Thomson et al. 2002, LeSar and
Rickman 2003). The fundamental difficulty here is that dislocations, unlike particles, are linear
objects of considerable topological complexity. Hence, when concepts of statistical mechanics and
the theory of rate processes are used, some level of phenomenological description is unavoidable.

Statistical models of dislocation cells, Persistent Slip Bands (PSBs), shear bands, or other orga-
nized dislocation structures attempt to develop continuum equations for dislocation densities that
contain spatial gradients that drive instabilities and self-organization. Several models have been
recently advanced, and will be reviewed here.

The Walgraef-Aifantis (Walgraef and Aifantis 1985) statistical model has gained interest, be-
cause of its ability to predict dislocation pattern formation under cyclic deformation. The model
is formulated as a set of reaction-diffusion equations with spatial derivatives that lead to inhomo-
geneous dislocation distributions, and will thus be first considered here. In this model, the static
dislocation density, formed by the immobilized dislocations of the forest, sub-grain walls or bound-
aries, is defined as ρs, and the mobile dislocation density for dislocations gliding between obstacles
is defined as ρm. For simplicity, consider systems oriented for single slip. Hence, the mobile dislo-
cation density, ρm is divided into two sub-family densities representing dislocations gliding in the
direction of the Burgers vector (ρ+

m) or in the opposite direction (ρ−m) (with ρm = ρ+
m + ρ−m). These

dislocation densities are related to the strain rate via the Orowan relation: ε̇ = bρmvg, where b is
the length of Burgers vector, ρm the total mobile dislocation density and vg the glide velocity in
the primary slip plane. Moreover, the dislocation densities are related to the internal stress by the
relation :

σi =
µb

2πλ
+ ξµb

√
ρs (183)

with µ is the shear modulus and ξ is a constant. In the last equation the first contribution comes
from obstacles such as precipitates or pre-existing walls separated by an effective spacing λ and, the
second part is the contribution from the static dislocation population which also opposes dislocation
motion. The internal stress, σi, reduces the effective stress, σe, defined as: σe = σa − σi, with σa

representing the applied stress. Finally, the glide velocity is related to the effective stress via
appropriate phenomenological relations expressing the fact that individual dislocation motion is
initiated when the effective stress acting on a dislocation exceeds the yield stress, in the form:
vg ∝ (σe

σ0
)m. This can be put more explicitly as:

vg = v0 exp

{
− µ

kT
(
σe

σ0
)−m

}
(184)

where σ0 is the yield stress and m > 1. The essential features of dislocation dynamics are: their
mobility , which includes thermal diffusion and climb, and their mutual interaction processes. By
taking into account these mechanisms, the resulting dynamical system can be written as (Walgraef
and Aifantis 1985):

∂tρs = −∇ · Js + vgρm
√
ρs − vsdρ

2
s − vgδρmρs − βρs + vgG(ρs)ρm

∂tρ
+
m = −∇ · J+ +

β

2
ρs − vgG(ρs)ρ

+
m − vgδρ

+
m(ρs + ρ−m)

∂tρ
−
m = −∇ · J− +

β

2
ρs − vgG(ρs)ρ

−
m − vgδρ

−
m(ρs + ρ+

m) (185)
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where δ is the characteristic separation length between dislocations for spontaneous annihilation
(Essmann and Mughrabi 1979), d is the characteristic length of spontaneous dipole collapse, β
is the frequency of dislocation freeing from the forest and is proportional to vg/d̄ where d̄ is the
characteristic dipole de-stabilization length which is inversely proportional to the effective stress,
and β = β0vgσe. The different characteristic lengths introduced here, or at least their order of
magnitude, may in principle be evaluated from microscopic analysis (Neumann 1971, Essmann and
Mughrabi 1979). Due to mutual interactions, thermal activation and climb, forest dislocations
mobility is represented by a diffusive current J = −Ds∇ρs, which represents the effective diffusion
within the forest. The current of mobile dislocations is taken as J± = ±vgρ

±
m and represents the

flux caused by gliding dislocations, in the present case, it is the flux caused by their edge component.
Stability and numerical analyses of the previous set of equations have provided information on the
conditions for formation of PSB’s in fatigued specimens. It is shown that PSB formation is triggered
by the clustering of dislocations or dislocation dipoles, which become finally immobile and arrange
themselves in regularly spaced walls of high dislocation density (Walgraef and Aifantis 1985).

Another class of models is based on the evolution of dipolar loops, triggered by their interaction
with gliding dislocations (Kratochvil et al. 1992, Saxlov̀a et al. 1997, Kubin and Kratochvil 2000).
The proposed statistical models are of the reaction-transport type, and focus on the feedback
between the evolution of glide dislocations and the dipole density, as conceptualized earlier by
(Mughrabi 1981). The result is the sweeping of dipole loops by screw dislocations, which initiates
the formation of dislocation walls. In this approach, dipole generation and interactions play a
secondary role, and are introduced in an ad hoc and qualitative way.

To illustrate the statistical approach of Kratochvil and coworkers, let us consider N loops of one
type (i.e either interstitial or vacancy), i = 1, ..., N . For the ith loop, the equation of motion can
be then expressed as:

dri

dt
= B




N∑

j 6=i

fint(ri − rj) + fext


 , (186)

where B is the loop mobility and fext is the force caused by stress gradients and glide dislocations,
and fint is the interaction force between dipoles. In order to obtain a continuous field description,
equation (186) is multiplied by the delta function δ(r − ri), and the result is differentiated with
respect to r, thus we have:

d

dr

(
dri

dt
δ(r − ri)

)
= B

d

dr

(
[

N∑

i=1

fint(ri − rj) + fext]δ(r − ri)

)
. (187)

By introduction of the discrete density function: %(r, r1, ....., rN ) =
∑N

j 6=i δ(r − ri), and taking the
sum on the right hand side of equation (187), it can be replaced by a weighted integral. Summing
up the above equation for all loops, one gets

d

dt
%(r) +

d

dr
[Bf(r)%(r)] = 0, (188)

where

f(r) ≡
∫

fint(s − r)%(s)ds + fext; (189)

As a first approximation, it can be assumed that % in equation (188) and definition (189)
represents the local averaged loop density %(r) independent of detailed loop positions ri. Then,
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equation (188) represents the balance equation for the continuous distribution of loops described
by the density %(r). Since the interaction force between loops fint is short range, Kratochvil and
coworkers utilize a Taylor series expansion of %(r) around r to finally obtain:

f(r) = −d%(r)
dr

∫
(s − r)fint(s − r)ds + fext; (190)

From the balance equation (188) and approximation (190), the problem of loop-loop interaction
was shown to be represented as a diffusion equation in a drift field:

d

dt
%(r) =

d

dr
[Dd%(r)

dr
] +

d

dr
fext, (191)

where D is an effective diffusion coefficient, given by:

D = B%(r)

∫
sfint(s)ds (192)

When the motion of screw dislocations is coupled with Equation(191), self-organized patterns
of dipolar loops may be attainable as conjectured by Mughrabi (Mughrabi 1981).

In an attempt to generalize the statistical description of dislocations, (El-Azab 2000) described
the dislocation content of a slip system by introducing the distribution φ(i)(x,v, t, t). Considering
only glide motion, the tangent vector is described by a single scalar parameter: t = t(θ). The
distribution function, φ(i) is defined in a generalized phase space, such that φ(i)(x,v, θ, t)dxdvdθ
is the dislocation line length contained in the phase space volume dxdvdθ at time t on the ith slip
system. The approach of (El-Azab 2000) is to consider the conservation equation of the dislocation
density tensor, α, for which dislocations on the ith slip system contribute:

α(i)(x, t) =

∫

v

∫

θ
t ⊗ b(i)φ(i)(x,v, θ, t) dvdθ (193)

The condition of compatibility of the total distortion field in the crystal is written as: α +∇×
βP = 0 (Kröner 1981). Considering a volume Ω, this can be extended to:

A =

∫

Ω
αdΩ +

∫

Ω
∇× βPdΩ = 0. (194)

βP is the plastic distortion tensor. Equation(194) corresponds to the principle of invariance of
the total Burgers vector. For interacting dislocations, however, (El-Azab 2000) included additional
source terms to the conservation equations. Thus, for the ith slip system we have:

d

dt

∫

Ω
α(i)dΩ =

∫

Ω

∑
S(i)dΩ ; i = 1, N. (195)

∑
S(i) includes all possible tensorial sources, S(i), resulting from Burgers vector reactions and cross

slip. The time rate of variation of the dislocation density tensor in terms of the distribution function
has been worked out by (El-Azab 2000) as:

d

dt

∫

x
α(i)(x, t) dx =

∫

x

∫

v

∫

θ
t ⊗ b(i)

(
∂

∂t
+ v · ∇ + v̇ · ∇v

)
φ(i) dxdvdθ, (196)
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where the terms containing θ̇ ∂
∂θ cancel each other. The right-hand side of (195) can also be repre-

sented by a phase space integral of scalar source functions

∫

Ω

∑
S(i)dΩ =

∫

x

∫

v

∫

θ
t ⊗ b(i)

∑
S(i) dxdvdθ. (197)

From the last two equations, (El-Azab 2000) finally obtained a set of kinetic equations, of the form:

(
∂

∂t
+ v · ∇ + v̇ · ∇v

)
φ(i) =

∑
S(i) ; i = 1, N. (198)

It is also shown that this generalized approach can be reduced to the more simplified formula-
tion of (Groma 1997) in the special case of a system of parallel edge dislocations in a single slip
configuration. The linear stability analysis of Groma (Groma 1997) shows that a homogeneous
stationary solution is unstable and that density perturbations grow, leading to pattern formation.

Hartley (Hartley 2003) introduced the concept of a dislocation distribution vector in an effort
to connect DD simulations to continuum theories. This is defined as:

ρβ(t) ≡ tρβ(t) (199)

so that the magnitude of ρβ(t) is
|ρβ(t)| = ρβ(t) (200)

which is the total length per unit volume of dislocation lines with tangents parallel to t, and with
Burgers vector bβ . The dislocation distribution vector is related to the Nye tensor,α, by:

α =
∑

β

bβ ⊗ ρβ (201)

where the sum is carried over all Burgers vectors in all slip systems. The curvature tensor of the
deformed volume is given by:

κ =
1

2
Tr(α)I − α (202)

Thus, it may be possible to compute the volumetric distortions associated with the movement of
dislocations within a simulation volume, and then connect these distortions to continuum theories.

Zaiser (Zaiser 2001) noted that because of the highly intermittent nature of plastic flow, the
instantaneous active slip volume in FCC metals is of the order of 10−6 only, and that at typical strain
rates of 10−4 s−1, the time between neighboring avalanches exceeds the lifetime of an individual
avalanche by 4-6 orders of magnitude. On that basis, he concluded that plastic deformation can be
characterized as a slowly-driven non-equilibrium system exhibiting large fluctuations. To estimate
the magnitude of such fluctuations, Hahner (Hähner 1996) proposed that, if one neglects dislocation
multiplication and annihilation, the average work done by the internal stress must be zero, and
that the work of the external stress is dissipated into heat. Thus, one can write:

< τβ
intv

β >= 0 (203)
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where τβ
int and vβ are internal stresses and dislocation velocities on slip system β. Recognizing that

the effective stress τeff has an external τext plus an internal τint component, and upon separating
the stress and velocity into average (represented by < · · · >) and fluctuating (represented by
δ · ··) components, Zaiser (Zaiser 2001) arrives at the following expressions for the autocorrelation

functions of the effective stress τβ
eff , and dislocation velocity vβ fluctuations:

< (δτβ
eff )2 > = < τβ

int >< τβ
eff > (204)

< (δvβ)2 >

< vβ >2
=

< τβ
int >

< τβ
eff >

=
b2ρβ < τβ

int >

B < γ̇β >

where B is the mobility, and γ̇β is the average shear strain rate. Using typical values for Cu in the
previous equations, the relative velocity fluctuation is found to be on the order of 107 (Zaiser 2001),
in accordance with the experimental measurements of Neuhauser (Neuhäuser 1983). Recently,
detailed measurements of the misorientation angles across dislocation walls have been made by
Hughes (Hughes, Chrzan, Liu and Hansen 1998). Zaiser (Zaiser 2001) formulated a velocity-
averaged stochastic version of Equation (198) for the distribution function of surplus dislocation
segments, or geometrically necessary dislocations to show that the probability distribution function
for misorientation angles is in good agreement with the experimental measurements of Hughes
(Hughes et al. 1998).

A percolation-type stochastic dislocation model has been advanced by Thomson and coworkers
(Thomson and Levine 1998, Shim, Levine and Thomson 2001, Thomson et al. 2002). In this model,
which is limited to Stage III deformation, the weakest cell in a band undergoes a burst of strain,
which initiates a cluster of newly strained cells. Slip transmission to neighboring cells is assumed
to be of the form: s∗ = as, where s is the number of dislocations in the strained cell, a is a
pileup amplification factor, and s∗ is the number of dislocations in the previously unstrained cell.
The key parameter in such model, a, is assumed to depend on two types of mechanisms: (1) a
random distribution of sources within the cell walls, and/ or (2) a distribution of locks holding
up dislocations within the cell walls. Their analysis shows that percolating slip clusters conform
to the universality class of percolation theory (Stauffer and Aharony 1992) can be effectively used
to describe slip transmission in Stage III, and that a well-defined percolation threshold can be
identified.

The power of statistical mechanics can be brought to bear on one of the most important chal-
lenges for the multiscale modeling approach. The large disparity in time and length scales during
plastic deformation limit the reach of direct dislocation dynamics simulations. Hence, it is of inter-
est to determine the necessary coarse graining strategies for both temporal and spatial variables.
LeSar and coworkers have begun to tackle this issue by investigations of a number of specific prob-
lems, namely the combined motion of dislocations and solutes, and the problem of the long-range
interactions of blocks of dislocation ensembles (LeSar, Najafabadi and Srolovitz 1989, LeSar and
Rickman 2002, Rickman, LeSar and Srolovitz 2003, LeSar and Rickman 2003).

In the limit where the solute mobility is high relative to that of the dislocations, dislocation-
solute atmosphere pairs can be treated as quasi-particles, and the degrees of freedom associated
with individual solute atoms can be eliminated (Rickman et al. 2003). Thus, and effective mobility
can be derived, and can be related to the details of such interaction. However, in the other extreme
limit of low solute mobility compared to dislocations, the solute atoms function essentially as static
traps for dislocations. In this case, LeSar and coworkers modelled slip as a discrete, one-dimensional
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“birth-and-death”stochastic process (Van Kampen 1992). (LeSar and Rickman 2003) find that the
dislocation diffusivity is modified by ∆D(c, ε/kBT ):

∆D

D′
= −c (τt/τ) − 1

c ((τt/τ) − 1) + 1
, (205)

where τt/τ = e−ε/kBT is the mean residence time in a trapped state, D′ is the diffusivity when
there are no traps, c ≡ Nt/N is the trap (i.e., solute) concentration. These examples show that it
may be possible to average-out fast time variables in dislocation dynamics simulations.

4.3 Discrete Dislocation Dynamics

4.3.1 Isotropic Crystals

Since it was first introduced in the mid-eighties independently by Lepinoux and Kubin (Lepinoux
and Kubin 1987) and by Ghoniem and Amodeo (Ghoniem and Amodeo 1988a), Dislocation Dy-
namics (DD) has now become an important computer simulation tool for the description of plastic
deformation at the micro- and meso-scales (i.e. the size range of a fraction of a micron to tens
of microns). The method is based on a hierarchy of approximations that enable the solution of
relevant problems with today’s computational resources.

In its early versions, the collective behavior of dislocation ensembles was determined by direct
numerical simulations of the interactions between infinitely long, straight dislocations (Lepinoux
and Kubin 1987, Amodeo and Ghoniem 1988, Ghoniem and Amodeo 1988a, Guluoglu et al. 1989,
Ghoniem and Amodeo 1990, Amodeo and Ghoniem 1990b, Amodeo and Ghoniem 1990a, Amodeo
and Ghoniem 1991, Ghoniem 1992, Groma and Pawley 1993, Lubarda and Needleman 1993, Wang
and LeSar 1995, Barts and Carlsson 1995, Barts and Carlsson 1998). Recently, several research
groups extended the DD methodology to the more physical, yet considerably more complex 3-D sim-
ulations. The method can be traced back to the concepts of internal stress fields and configurational
forces. The more recent development of 3-D lattice dislocation dynamics by Kubin and co-workers
has resulted in greater confidence in the ability of DD to simulate more complex deformation mi-
crostructure (Kubin, Canova, Condat, Devincre, Pontikis and Brechet 1992, Kubin and Canova
1992, DeVincre and Condat 1992, Canova, Brechet and Kubin 1992, DeVincre, Pontikis, Brechet,
Canova, Condat and Kubin 1992, Kubin 1993, Devincre and Kubin 1994, Canova, Brechet, Kubin,
DeVincre, Pontikis and Condat 2000). More rigorous formulations of 3-D DD have contributed to
its rapid development and applications in many systems (Hirth, Rhee and Zbib 1996, Schwarz and
Tersoff 1996, Schwarz 1997, Schwarz and LeGoues 1997, Zbib, Rhee and Hirth 1998, Rhee, Zbib,
Hirth, Huang and de la Rubia 1998, Ghoniem and Sun 1999a, Ghoniem 1999b, Ghoniem, Tong and
Sun 2000, Ghoniem, Huang and Wang 2001). We can classify the computational methods of DD
into the following categories:

1. The Parametric Method (Kukta and Freund 1998, Ghoniem 1999b, Ghoniem et al. 2000,
Ghoniem et al. 2001): The dislocation loop can be geometrically represented as a continuous
(to second derivative) composite space curve. This has two advantages: (1) there is no
abrupt variation or singularities associated with the self-force at the joining nodes in between
segments, (2) very drastic variations in dislocation curvature can be easily handled without
excessive re-meshing. Other approximation methods have been developed by a number of
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groups. These approaches differ mainly in the representation of dislocation loop geometry,
the manner by which the elastic field and self energies are calculated, and some additional
details related to how boundary and interface conditions are handled. The suitability of each
method is determined by the required level of accuracy and resolution in a given application.
dislocation loops are divided into contiguous segments represented by parametric space curves.

2. The Lattice Method (Kubin et al. 1992, Moulin, Condat and Kubin 1997): Straight dislo-
cation segments (either pure screw or edge in the earliest versions , or of a mixed character
in more recent versions) are allowed to jump on specific lattice sites and orientations. The
method is computationally fast, but gives coarse resolution of dislocation interactions.

3. The Force Method (Hirth et al. 1996, Zbib et al. 1998): Straight dislocation segments of mixed
character in the are moved in a rigid body fashion along the normal to their mid-points, but
they are not tied to an underlying spatial lattice or grid. The advantage of this method is
that the explicit information on the elastic field is not necessary, since closed-form solutions
for the interaction forces are directly used.

4. The Differential Stress Method (Schwarz and Tersoff 1996, Schwarz 1997): This is based on
calculations of the stress field of a differential straight line element on the dislocation. Using
numerical integration, Peach-Koehler forces on all other segments are determined . The
Brown procedure (Brown 1967) is then utilized to remove the singularities associated with
the self force calculation.

5. The Phase Field Microelasticity Method : This method is based on the reciprocal space the-
ory of the strain in an arbitrary elastically homogeneous system of misfitting coherent in-
clusions embedded into the parent phase . Thus, consideration of individual segments of all
dislocation lines is not required. Instead, the temporal and spatial evolution of several den-
sity function profiles (fields) are obtained by solving continuum equations in Fourier space
(Khachaturyan 2000, Wang, Jin, Cuitino and Khachaturyan 2000, Wang, Jin, Cuitino and
Khachaturyan 2001c).

We will develop in the following the basic ingredients of computational dislocation dynamics,
following closely the parametric method. When the Green’s functions are known, the elastic field of
a dislocation loop can be constructed by a surface integration. The starting point in this calculation
is the displacement field in a crystal containing a dislocation loop, which can be expressed as:
(Volterra 1907, Mura 1968)

ui(x) = −
∫

S
Cjlmnbm

∂

∂x′l
Gij(x,x

′)nndS(x′) (206)

where Cjlmn is the elastic constants tensor, Gij(x,x
′) are the Green’s functions at x due to a point

force applied at x′, S is the surface capping the loop, nn is a unit normal to S and bm is the Burgers
vector. The elastic distortion tensor, ui,j can be obtained from Equation (206) by differentiation.
The symmetric part of ui,j (elastic strain tensor) is then used in the stress-strain relationship to
find the stress tensor at a field point x, caused by the dislocation loop.

In an elastically isotropic and infinite medium, a more efficient form of Equation (206) can be
expressed as a line integral performed over the closed dislocation loop as (deWit 1960):
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ui = − bi
4π

∮

C
Akdlk +

1

8π

∮

C

[
εiklblR,pp +

1

1 − ν
εkmnbnR,mi

]
dlk (207)

where µ & ν are the shear modulus and Poisson’s ratio, respectively, b is Burgers vector of Cartesian
components bi, and the vector potential Ak(R) = εijkXisj/[R(R + R · s)] satisfies the differential
equation: εpikAk,p(R) = XiR

−3, where s is an arbitrary unit vector. The radius vector R connects
a source point on the loop to a field point, as shown in Figure 8, with Cartesian components Ri,
successive partial derivatives R,ijk...., and magnitude R. The line integrals are carried along the
closed contour C defining the dislocation loop, of differential arc length dl of components dlk.

Consider now the virtual motion of the dislocation loop. The mechanical power during the
virtual motion is composed of two parts: (1) change in the elastic energy stored in the medium
upon loop motion under the influence of its own stress (i.e. the change in the loop self-energy),
(2) the work done on moving the loop as a result of the action of external and internal stresses,
excluding the stress contribution of the loop itself. These two components constitute the Peach-
Koehler work (Peach and Koehler 1950). The main idea of DD is to derive approximate equations
of motion from the principle of Virtual Power Dissipation of the second law of thermodynamics
(Ghoniem et al. 2001), by finding virtual Peach-Kohler forces that would result in the simultaneous
displacement of all dislocation loops in the crystal. A major simplification is that this many-body
problem is reduced to the single loop problem. In this simplification, instead of moving all the loops
simultaneously, they are moved sequentially, with the motion of each one against the collective
field of all other loops. The approach is reminiscent of the single electron simplification of the
many-electron problem in quantum mechanics.

In finite systems, the Green’s functions are not invariant under x→x′ transformations, and
they become functions of both source and field points (i.e. not functions of the radius vector
alone anymore). This does not allow the reduction of the surface integral of equation 207 to a
simpler line integral by application of Stokes theorem. In addition, closed form solutions for the
Green’s functions and their spatial derivatives are available only for elastically isotropic materials.
Therefore, rigorous 3-D DD in finite, anisotropic systems (e.g. thin films, quantum dots, etc.) are
very demanding, and have not yet been implemented.

If the material is assumed to be elastically isotropic and infinite, a great reduction in the level
of required computations ensues. First, surface integrals can be replaced by line integrals along the
dislocation. Second, Green’s functions and their derivatives have analytical solutions. Thus, the
starting point in most DD simulations so far is a description of the elastic field of dislocation loops
of arbitrary shapes by line integrals of the form proposed by (deWit 1960) as:

σij =
µ

4π

∮

C

[
1

2
R,mpp (εjmndli + εimndlj) +

1

1 − ν
εkmn (R,ijm − δijR,ppm) dlk

]
(208)

where µ & ν are the shear modulus and Poisson’s ratio, respectively. The line integral is discretized,
and the stress field of dislocation ensembles is obtained by a summation process over line segments.

Recently, Ghoniem and co-workers (Ghoniem and Sun 1999a, Ghoniem et al. 2001) have shown
that if dislocation loops are discretized into curved parametric segments, one can obtain the field
by numerical integration over the scalar parameter that represents the segment. If one of these
segments is described by a parameter ω that varies,for example, from 0 to 1 at end nodes of the
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segment. The segment is fully determined as an affine mapping on the scalar interval ∈ [0, 1], if
we introduce the tangent vector T, the unit tangent vector t, the unit radius vector e, as follows:
T = dl

dω , t = T
|T| , e = R

R . Let the Cartesian orthonormal basis set be denoted by 1 ≡ {1x,1y,1z},
I = 1 ⊗ 1 as the second order unit tensor, and ⊗ denotes tensor product. Now define the three
vectors (g1 = e, g2 = t, g3 = b/|b|) as a covariant basis set for the curvilinear segment, and their
contravariant reciprocals as: gi ·gj = δi

j , where δi
j is the mixed Kronecker delta and V = (g1×g2)·g3

the volume spanned by the vector basis, as shown in Figure (4.3.4).
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Figure 8: Parametric Representation of Dislocation Segments
(After Ghoniem et al. (2001))

The differential stress field is given by:

dσ

dω
=

µV |T|
4π(1 − ν)R2

{(
g1 ⊗ g1 + g1 ⊗ g1

)
+ (1 − ν)

(
g2 ⊗ g2 + g2 ⊗ g2

)
− (3g1 ⊗ g1 + I)

}
(209)

Once the parametric curve for the dislocation segment is mapped onto the scalar interval {ω ∈
[0, 1]}, the stress field everywhere is obtained as a fast numerical quadrature sum (Ghoniem and
Sun 1999a). The Peach-Kohler force exerted on any other dislocation segment can be obtained
from the total stress field (external and internal) at the segment as (Peach and Koehler 1950):

FPK = σ · b × t (210)

The total self- energy of the dislocation loop is determined by double line integrals. However,
(Gavazza and Barnett 1976) have shown that the first variation in the self- energy of the loop can
be written as a single line integral, and that the majority of the contribution is governed by the
local line curvature. Based on these methods for evaluations of the interaction and self-forces, the
weak variational form of the governing equation of motion of a single dislocation loop was developed
by Ghoniem (Ghoniem et al. 2000) as:
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∫

Γ

(
F t

k −BαkVα

)
δrk |ds| = 0 (211)

Here, F t
k are the components of the resultant force, consisting of the Peach-Koehler force FPK

(generated by the sum of the external and internal stress fields), the self-force Fs, and the Osmotic
force FO ( in case climb is also considered (Ghoniem et al. 2000)). The resistivity matrix (inverse
mobility) is Bαk, Vα are the velocity vector components, and the line integral is carried along the
arc length of the dislocation ds. To simplify the problem, let us define the following dimensionless
parameters:

r∗ =
r

a
, f∗ =

F

µa
, t∗ =

µt

B

Here, a is lattice constant, µ the shear modulus, and t is time. Hence Equation (211) can be
rewritten in dimensionless matrix form as:

∫

Γ∗

δr∗>
(
f∗ − dr∗

dt∗

)
|ds∗| = 0 (212)

Here, f∗ = [f∗1 , f
∗
2 , f

∗
3 ]>, and r∗ = [r∗1, r

∗
2, r

∗
3]

>, which are all dependent on the dimensionless time
t∗. Following (Ghoniem et al. 2000), a closed dislocation loop can be divided into Ns segments. In
each segment j, we can choose a set of generalized coordinates qm at the two ends, thus allowing
parameterization of the form:

r∗ = CQ (213)

Here, C = [C1(ω), C2(ω), ..., Cm(ω)], Ci(ω), (i = 1, 2, ...m) are shape functions dependent on the pa-
rameter (0 ≤ ω ≤ 1), and Q = [q1, q2, ..., qm]>, qi are a set of generalized coordinates. Substituting
Equation (213) into Equation (212), we obtain:

Ns∑

j=1

∫

Γj

δQ>
(
C>f∗ − C>C

dQ

dt∗

)
|ds| = 0 (214)

Let,

fj =

∫

Γj

C>f∗ |ds| , kj =

∫

Γj

C>C |ds|

Following a similar procedure to the FEM, we assemble the EOM for all contiguous segments in
global matrices and vectors, as:

F =
Ns∑

j=1

fj , K =
Ns∑

j=1

kj

then, from EQN 214 we get,

K
dQ

dt∗
= F (215)
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4.3.2 Anisotropic Crystals

For an anisotropic linearly elastic crystal, Mura (Mura 1963) derived a line integral expression for
the elastic distortion of a dislocation loop, as

ui,j(x) =∈jnk Cpqmnbm

∫

L
Gip,q(x − x′)νkdl(x

′), (216)

where νk is the unit tangent vector of the dislocation loop line L, dl is the dislocation line element,
∈jnh is the permutation tensor, Cijkl is the fourth order elastic constants tensor, Gij ,l (x − x′) =
∂Gij(x − x′)/∂xl, and Gij(x − x′) are the Green’s tensor functions, which correspond to displace-
ment components along the xi-direction at point x due to a unit point force in the xj-direction
applied at point x′ in an infinite medium.

It can be seen that the elastic distortion formula (216) involves derivatives of the Green’s func-
tions, which need special consideration. For general anisotropic solids, analytical expressions for
Gij,k are not available. However, these functions can be expressed in an integral form (see e.g.
(Barnett 1972), (Willis 1975), (Bacon, Barnett and Scattergodd 1980) and (Mura 1987)), as:

Gij ,k (x − x′) =
1

8π2|r|2
∮

Ck

[−r̄kNij(k̄)D−1(k̄)

+k̄kClpmq(r̄pk̄q + k̄pr̄q)Nil(k̄)Njm(k̄)D−2(k̄)]dφ (217)

where r = x − x′, r̄ = r/|r|, k̄ is the unit vector on the plane normal to r, the integral is taken
around the unit circle Ck on the plane normal to r, Nij(k) and D(k) are the adjoint matrix and
the determinant of the second order tensor Cikjlkkkl, respectively.

At a point P on a dislocation line L, the external force per unit length is obtained by the Peach-
Koehler formula: FA = (b · σA) × t, where σA is the sum of the stress from an applied load and
that arising from internal sources at P , b is the Burgers vector of the dislocation, and t is the unit
tangent vector of the element dl. For the special, yet important case of a planar dislocation loop
lying on a glide plane with unit normal n, the glide force acts along the in-plane normal to L at P :
m = n × t. The glide component FA

g of the external force can be obtained by resolving FA along
m as:

FA
g = FA · m = b · σA · n (218)

The in-plane self-force at the point P on the loop is also obtained in a manner similar to the
external Peach-Kohler force, with an additional contribution from stretching the dislocation line
upon a virtual infinitesimal motion (Barnett 1976):

FS = κE(t) − b · σ̃S · n (219)

where E(t) is the pre-logarithmic energy factor for an infinite straight dislocation parallel to t:
E(t) = 1

2b · Σ(t) · n, with Σ(t) being the stress tensor of an infinite straight dislocation along the
loop’s tangent at P. σS is self stress tensor due to the dislocation L, and σ̃ = 1

2 [σS(P + εm) +
σS(P − εm)] is the average self-stress at P, κ is the in-plane curvature at P, and ε = |b|/2.

Barnett and coworkers (Barnett 1976, Gavazza and Barnett 1976) analyzed the structure of the
self-force as a sum:

FS = κE(t) − κ[E(t) + E ′′(t)ln(
8

εκ
)] − J(L,P) + Fcore (220)
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where the second and third terms are line tension contributions, which usually account for the main
part of the self-force, while J(L,P) is a non-local contribution from other parts of the loop, and
Fcore is due to the contribution to the self-energy from the dislocation core.

4.3.3 Nanolayers and Thin Films

Most DD applications so far are for the deformation of bulk, isotropic materials. Very little attention
has been paid to finding solutions for the elastic field of three-dimensional dislocations near interface,
and no exact analytical solutions exist even for the simple case of a straight dislocation segment
in two half-space materials. Using approximate methods or numerical calculations, a few recent
studies have attempted to treat the influence of free surfaces (i.e. image effects) on the dynamics
of dislocation systems. These are summarized as:

1. In the superposition method, combined with the finite element or boundary element methods,
numerical techniques are utilized to satisfy traction equilibrium at free surfaces (Weygrand,
Friedman, Van der Giessen and Needleman 2002, Martinez and Ghoniem 2002);

2. In the surface dislocation method, surface dislocation loop distributions are invoked so as to
approximately satisfy interfacial or free surface traction conditions at specific surface collo-
cation points (Khraishi, Zbib and de la Rubia 2001);

3. Approximate methods are based on Lothe’s solution (Lothe, Indenbom and Chamrov 1982,
Schwarz 1999), or assume rigid interfaces (Blanckenhagen, Gumbsch and Arzt 2001);

4. Elasticity methods for the solution of a dislocation segment near a free surface (Gosling and
Willis 1994, Fivel, Gosling and Groma 1996), or the Boussinisque solution for a point force
on a free surface (Verdier, Fivel and Groma 1998)

The approaches described above have their limitations. Numerical methods (the finite element
(FEM) or the boundary element (BEM)), suffer from the necessity to re-calculate the super-posed
FEM or BEM solution every time step. As dislocations approach the surface or interface, the mesh
must be refined, and the solution is not convergent if special care is not exercised with dislocation
singularities. Other methods are limited to the simplest free surface boundary condition, and
their extensions to anisotropic multilayered materials are not readily attainable, without ad hoc
approximation. The numerous interfaces in multi-layer thin films pose particular difficulties for
all existing methods. No solution for 3-D arbitrary shape dislocations in anisotropic multilayer
materials is thus available.

We will first utilize the method of Yang and Pan (2002a) to calculate Green’s functions and their
derivatives in anisotropic multilayers. The elastic field of dislocations in multilayer thin films is
then presented, with numerical applications for infinitesimal and finite dislocation loops. Analysis
of the effects of image forces due to free surfaces and interfaces will also be discussed.

Green’s Tensor Functions and their Derivatives
Elastic Green’s functions, which describe the displacement response of a linear elastic solid to a
point force, are fundamental ingredients in many methods developed for understanding the mechan-
ics of materials. A description of the internal, or self stress field of materials containing defects is
critically dependent on accurate knowledge of elastic Green’s functions. Interaction forces between
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defects and the elastic energy stored around them can be obtained once Green’s functions are deter-
mined. Unfortunately, however, analytical solutions of Green’s functions are not available, with the
exception of a few cases. Moreover, numerical methods for 3-D Green’s functions in finite spaces
of general elastic anisotropy are also very limited (Barnett and Lothe 1975). Using 2-D Fourier
transforms, numerical solutions for anisotropic Green’s functions in half-space and bimaterials have
been recently obtained (Ting 1996). Pan and coworkers developed Green’s functions in anisotropic
layered structures, such as bimaterials (Pan and Yuan 1999), trimaterials (Yang and Pan 2002b),
and multilayers (Yang and Pan 2002a, Yuan, Yang and Yang 2003). In this section, we briefly
present the basic procedure to calculate Green’s functions in anisotropic multilayered materials us-
ing the 2-D Fourier transform combined with the generalized Stroh’s formalism. The presentation
in this section follows references (Barnett and Lothe 1975, Ting 1996, Pan and Yuan 1999, Yang
and Pan 2002b, Yang and Pan 2002a).

Subsequent developments for the elastic field and dislocation-interface interaction forces in the
following sections will utilize the methods of these references, and hence a concise outline of the
method for determination of Green’s tensor functions will be given. Consider a stack of N layers,
each of uniform thickness, perfectly-bonded at their interfaces, as shown in Figure 9. Variables
describing the geometry and coordinates are also shown in the figure. We assume here that each
layer is homogeneous, anisotropic and with distinct elastic properties.

Figure 9: Geometry of a multilayered thin film system.

The Green’s tensor function Gij(x,x
′) is the displacement component in the xi-direction at point

x in response to a unit body force in the xj-direction, applied at point x′. These functions satisfy
the equilibrium equation:

Cijkl(x)Gkm,lj (x,x′) = −δimδ(x,x′) (221)

Now, introduce the 2-D Fourier transform, applied to the in-plane coordinates (x1, x2), for
any function f(x1, x2, x3) in the real domain. The corresponding function in the Fourier domain,
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f̃(ξ1, ξ2, x3), is given by:

f̃(ξ1, ξ2, x3) =

∞∫

−∞

∞∫

−∞

f(x1, x2, x3)e
i(ξ1x1+ξ2x2)dx1dx2 (222)

Transforming Equation (221), we obtain:

CiαkβξαξβG̃km + i(Ciαk3 + Ci3kα)ξαG̃km,3 −Ci3k3G̃km,33 = eiξαx′

αδimδ(x3, x
′

3) (223)

where α, β = 1, 2.

The system of ordinary differential equations (223) is second order, with the independent variable
being the out-of-plane coordinate x3. The general solution for this system, which gives Green’s
functions in the Fourier domain is:

G̃(ξ1, ξ2, x3;x
′) = (224)

eiξαx′

α

[
G̃∞(ξ1, ξ2, x3;x

′
3) + iη−1(Ā < e−ip̄ηx3 > V + A < e−ipηx3 > W)

]

where (η, θ) are the polar coordinates of (ξ1, ξ2), V and W are unknown constant matrices to be
determined from boundary conditions, < e−ipηx3 >= diag[e−ip1ηx3 , e−ip2ηx3 , e−ip3ηx3 ], pi (Im(pi) >
0) and A = (a1,a2,a3) being the eigenvalues and eigenmatrix of

[Q + pi(R + RT ) + p2
i T]ai = 0 (225)

Qik = Cijksnjns, Rik = Cijk3nj , Tik = Ci3k3

with n1 = cos θ, and n2 = sin θ.

In the solution given by Equation (224), Green’s functions (displacements) are separated into
two parts: a singular full-space solution G̃∞ (with elastic properties being those where the field
point x is located, and the point force is applied at x′ = (0, 0, x′3)), and a regular complementary
part.

Stress Field of Dislocation Loops by Surface Integrals
Once Green’s tensor functions are determined, the elastic field of a dislocation loop can be con-
structed by numerical integration. The displacement vector field of a dislocation loop can be
expressed as (Mura 1968):

ui(x) = −
∫

S

Cjlmn(x′)bm
∂

∂x′l
Gji(x

′,x)nn(x′)dS(x′) (226)

where Gji(x
′,x) are the Green’s functions at x′ due to a point force applied at x, S is any arbitrary

surface capping the loop, nn is a unit normal to S and bm is the Burgers vector. Equation (226)
can be rewritten in another convenient form as:

ui(x) = −
∫

S

σmni(x
′,x)bmnn(x′)dS(x′) (227)

64



where σmni(x
′,x) is the mn-th Green’s stress component at a field point x′ due to a unit point

force in the i-direction applied at the source point x.

The stress field produced by the dislocation loop can be expressed as:

σij(x) = −Cijkl(x)

∫

S

Cpqmn(x′)bm
∂2

∂xl∂x′q
Gpk(x

′,x)nn(x′)dS(x′) (228)

or

σij(x) = −Cijkl(x)

∫

S

∂

∂xl
σmnk(x

′,x)bmnn(x′)dS(x′) (229)

When the dimensions of the dislocation loop are much smaller than the distance between any
source point on the loop and the field point, the loop can be considered as infinitesimal, and its
field can be obtained directly from Equations (226)-(229) without the surface integration.

σij(x) = −Cijkl(x)
∂

∂xl
σmnk(x

′,x)bmnn(x′)δA (230)

where δA is the loop area.

The derivatives of Green’s functions with respect to both field and source points are needed.
First, we consider derivatives with respect to a source point. The derivatives with respect to x′1
and x′2 in the Fourier domain are obtained as:

∂G̃k/∂x
′
α = iξαG̃k , α = 1, 2 (231)

where G̃k denotes Green’s functions or Green’s stresses of the k-th layer in the Fourier domain.
The derivatives of Green’s functions with respect to x′3 can be expressed as:

∂G̃k/∂x
′
3 = (232)

eiξαx′

α

[
∂G̃∞

k

∂x′3
+ iη−1(Āk < e−ip̄kη(x3−zk−1) >

∂Vk

∂x′3
+ Ak < e−ipkη(x3−zk) >

∂Wk

∂x′3
)

]

Similarly, one can obtain the derivatives of Green’s stresses. When we calculate Green’s func-
tions, Vk and Wk can be determined. However, their derivatives ∂Vk/∂x

′
3 and ∂Wk/∂x

′
3 are not

available, and we need to calculate them separately for determination of the stress field. Performing
derivatives on the boundary conditions, we obtain:

(Zk(zk) −Zk+1(zk) )




∂Vk/∂x
′

3

∂Wk/∂x
′

3

∂Vk+1/∂x
′

3

∂Wk+1/∂x
′

3


 =




∂ũ∞

k+1

∂x′

3

∂t̃∞
k+1

∂x′

3


 (zk) −

( ∂ũ∞

k

∂x′

3

∂t̃∞
k

∂x′

3

)
(zk),

k = 0, ...n− 1 (233)

( B̄n < e−ip̄nηhn > Bn )

(
∂Vn/∂x

′
3

∂Wn/∂x
′
3

)
= −∂t̃

∞
n (zn)

∂x′3
(234)
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Solving the linear algebraic equations (233) (and (234) when needed), ∂Vk/∂x
′
3 and ∂Wk/∂x

′
3

(k = 0, ...n) can be determined. Taking the inverse Fourier transforms of Equations (231) and
(232), the derivatives with respect to x′ are finally obtained.

Infinitesimal Dislocation Loop in Film-on-substrate

Here, we show results for a small (infinitesimal) dislocation loop in a thin film on top of a very
thick substrate, which is approximated as half-space. The film-substrate system is shown in Figure
10, with a thin film (of thickness h) on top of a half-space substrate. The substrate material (z < 0)
is copper, and the thin film is either aluminum or nickel. The materials selected for this example
are all fcc cubic anisotropic crystals, with their crystallographic axes [100],[010] and [001] taken to
coincide with the x, y and z directions, respectively. The elastic constants are taken from reference
(Hirth and Lothe 1982). The anisotropic ratio A = 0.5(C11 − C12)/C44) is 3.21, 1.21 and 2.52 for
Cu, Al and Ni respectively (A = 1 for isotropic materials).

Figure 10: Geometry and coordinate system for the film-on-substrate arrangement.

Assuming an infinitesimal dislocation is located at the middle of the thin film (i.e. x′ =
(0, 0, 0.5h)), with its surface area δA lying on the (111) plane, and b along the [1̄10]-direction.
Figures 11 and 12 show contour lines for the out-of-plane stress σ32 and the in-plane stress σ12 on
the plane y = 0, respectively. The stresses are normalized to |b|δAh−3 × 1010 . From these figures,
it can be seen that the out-of-plane stresses are forced to decrease identically to zero at the surface
to satisfy free traction boundary conditions. On the other hand, in-plane stresses are released at
the free surface. At the interface (z = 0), the out-of-plane stress components are continuous, while
in-plane components experience jumps as a result of the discontinuity in the elastic properties. As
one approaches the interface from a softer material to a harder one ( e.g. Al to Cu), the stress
fields, especially in-plane components, are arrested. Once one moves across the interface, in-plane
components are released, and experience a jump. It is also observed that he stress fields usually
are more complex for a source in a material with a high anisotropic ratio (e.g. Ni), while show
smoother variations in nearly isotropic materials ( e.g Al.)

Dislocation Loop in Film-on-substrate
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Figure 11: σ32 stress contours on the y = 0 plane due to an infinitesimal dislocation loop at
(0, 0, 0.5h) in (a) Al(film) on a Cu(substrate); (b) Ni(film) on a Cu(substrate).
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Figure 12: σ12 stress contours on the y = 0 plane due to an infinitesimal dislocation loop at
(0, 0, 0.5h) in (a) Al(film) on a Cu(substrate; (b) Ni(film) on a Cu(substrate).
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To understand the effects of free surfaces and the interfaces on stress distributions around
finite-size dislocation loops, we present here results for a circular loop. As an example, we choose
the same (Al) film and (Cu) substrate, as shown in Figure 10. The circular shear loop (radius,
R = 0.5h) is located in the middle of the film (0,0,0.5h), and lies on the (111)-plane, with b along
the [1̄10]-direction. Figure 13-(a) shows the σ23 = 0.15 iso-surface (normalized to |b|R−1 × 1010).
For comparison purposes, the same iso-surface in an Al infinite space is shown in Figure 13-(b). To
satisfy the zero traction boundary condition at the top surface, the out–of-plane stress iso-surface
is totally confined below it. The volume of the same iso-surface expands into the softer material
across the interface. This means that the range of influence of a dislocation loop in a harder layer
expands into neighboring softer layers, as compared to the infinite medium case.
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Figure 13: σ23 stress Iso-Surface for a circular shear dislocation loop in (a) Al(film) on a
Cu(substrate); (b) Al infinite space.
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Dislocation-Interface Interaction

So far, we determined the main characteristics of the elastic stress field induced finite size or
infinitesimal dislocations in a multilayer material. However, an area of great interest, especially
in relationship to DD simulations, is the distribution of configurational forces on dislocations as
they move or change their shapes. A dislocations will experience a configurational force (i.e. the
Peach-Koehler force), if it attempts motion or change in shape in a stress field, σ. This force can
be determined by the Peach-Koehler formula.

We will divide the stress field induced by a dislocation into two parts: the full-space solution
σ∞ and the image contribution σI . This separation will allow us to consider interface effects on
dislocation forces, and to calculate the dislocation self-force without ambiguities. For a dislocation
loop which is located totally whin a single material layer, the stress separation is clear. σ∞

corresponds to the stress field induced by the dislocation in a homogeneous, infinite medium with
a material that is identical to the layer where the dislocation is located. The stress field σ∞ of a
dislocation in an infinite anisotropic material can be expressed as a line integral along the dislocation
loop by the formula of Mura (Mura 1968). σ∞ will then induce a self-force on the dislocation, which
can be obtained by the procedure of (Gavazza and Barnett 1976), for details, see the work of (Han,
Ghoniem and Wang 2003). The force induced by the regular part of the stress field, σI , is usually
called image force, and can be calculated directly by applying the Peach-Koehler formula.

When a dislocation loop does not reside totally in one single layer, but crosses one or more inter-
faces and material layers, the separation of self-force from the image force is not so straightforward.
In this case, we distinguish between them in the following way. Consider a point P on the loop, and
assume that the whole loop is in a homogeneous, infinite medium, with a material identical to that
in which the point P is located. This loop will induce a stress field σ∞ and self-force on the unit
dislocation segment where P located. Now, subtract σ∞ from the total stress field to obtain the
image stress σI , which is regular. We use this part of the stress field to calculate, unambiguously,
the image force on the dislocation segment at P.

Force variations, for the two points A and B (which are the closest points when the corresponding
loop segment approaches the interface), are displayed in Figures 14-(a)&(b) respectively. Forces
are plotted as functions of the distance of the point from the interface, and they include self and
image contributions. They are also separated into glide and climb components. The 2D image force
approximation (Koehler barrier), estimated for an infinite straight dislocation near the interface is
calculated and shown in the figures as dashed lines (Koehler 1970). It can be seen that when the
loop is in one material (not across the interface), only the glide component of the image force at
the leading point (nearest to the interface) is close to the Koehler estimate. The climb component
and other loop configurations show drastic differences from the Koehler estimate as a result of the
three dimensionality of the problem.

The direction of the in-plane curvature of the loop is chosen as the positive direction for the self-
and glide-forces, while the positive direction of the climb force is defined along the plane normal
to (111). It observed that when the distance between the leading point on the dislocation and the
interface is less than 20|b|, image forces increase sharply and interface effects become dominant. If
linear elasticity is taken as strictly valid, the force is singular at the interface. Here, however, we
assume its validity up to a minimum approach distance on the order of the dislocation core width
of 2|b|. The results displayed in Figures 14-(a)&(b) show the complexity of loop force variations in
the close proximity of the interface. First, the jump in the self force is a result of the sudden change
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Figure 14: Dependence of force components on (a) the leading point A and (b) the trailing point
B, as functions of their distance from the interface. Koehler’s 2D solution is represented by dashed
lines.
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in the elastic constants of the medium, and the magnitude of the force scales with the stiffness of
the material. What is interesting here to note is that while the climb component of the image force
(including the Koehler barrier) is dominant on the closest segment when the loop crosses from the
softer (Al) to the harder (Cu) material, as seen in Figure 14-(a), the situation is reversed when the
loop crosses from Cu into Al (see Figure 14-(b)). This unique asymmetry is a result of the fact that
the entire loop geometry determines the split between the climb (fc), and glide (fg) components of
the force. Such detailed behavior can be critical to whether the dislocation segment would prefer
to climb and cross-slip across an interface, or just simply continue gliding on the same glide plane
if the orientation is favorable.

4.3.4 Line Integral Forms for DD

For a 3D dislocation loop of general geometry, the displacement vector can be expressed as (Mura
1968) ui(x) = −

∫

S

Cjlmnbm
∂

∂x′l
Gji(x

′,x)nn(x′)dS(x′) (235)

where Cjlmn are the elastic moduli, Gji(x
′,x) are the Green’s functions at x′ due to a point force

applied at x, S is an arbitrary surface capping the loop, nn is a unit normal to S and bm is the
Burgers vector.

The surface integral in Equation (235) is valid for a dislocation loop in either homogeneous
or inhomogeneous materials, assuming that the elastic Greens functions for a particular geometry
and elastic anisotropy are known. There are two main difficulties in using Equation (235). First,
evaluation of surface integrals for dislocation loops of complex 3D geometry can be computationally
demanding and intensive (Han and Ghoniem 2004). Second, elastic Greens functions are not
explicitly known for inhomogeneous anisotropic materials.

For a dislocation loop in an infinite homogeneous space, the displacement gradient tensor can
be reduced to a line integral along the dislocation as (Mura 1968, Mura 1987):

ui,j(x)∞ =

∮

L

β∞jih(x − x′)dlh(x′) (236)

where
β∞jih(x − x′) = CklmnbmεjnhG

∞
ik,l(x − x′) (237)

and L and dlh are the dislocation line and line element, respectively. The superscript ∞ represents
quantities in an infinite space, f,l = ∂f/∂xl, and εjnh is the usual permutation tensor.

The stress field produced by the dislocation can then be expressed as:

σij(x)∞ =

∮

L

S∞
ijh(x − x′)dlh(x′) (238)

where
S∞

ijh(x − x′) = CijklCpqmnεlnhbmG
∞
kp,q(x − x′) (239)

The kernel S∞
ijh(x − x′) in Equation (239) can be considered as the ij-stress component at x

produced by a line element of dislocation lying in the h-direction at x′, with Burgers vector b in
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an infinite space. While β∞
jih(x − x′) in Equation (237) can be considered as the corresponding

displacement gradient.

For a finite space, the field produced by the elemental dislocation source in an infinite space is not
guaranteed to satisfy prescribed boundary conditions. We therefore need to add a complementary
solution (denoted as SC

ijh(x,x′) or βC
jih(x,x′)) to the infinite medium solution (S∞

ijh(x − x′) or
β∞jih(x−x′) ), such that all boundary conditions can be satisfied. For example, on a free surface at

x3 = 0, we should have: [S∞
ijh(x− x′) + SC

ijh(x,x′)] |x3=0 = 0. If a complementary solution (with a
superscript C) can be obtained, then the elastic field due to a dislocation loop in the corresponding
finite space can be evaluated through the line integral:

ui,j(x) =

∮

L

[
β∞jih(x − x′) + βC

jih(x,x′)
]
dlh(x′) (240)

σij(x) =

∮

L

[
S∞

ijh(x − x′) + SC
ijh(x,x′)

]
dlh(x′) (241)

The first terms in Equations (240) and (241) are known infinite space solutions, and con-
tain well-understood singularities. The second (complementary) terms, however, are regular,
and need to be determined according to interface and boundary conditions. Now, assume that
the displacement field of the complementary kernel is uC

kh. The stress field it produces is then:
SC

ijh(x,x′) = Cijklu
C
kh,l(x,x

′), and the corresponding equilibrium equation is given by:

Cijkl(x)uC
kh,lj(x,x

′) = 0 (242)

For a layered medium, the general solution can be obtained by a Fourier transform with respect
to the in-plane coordinates (x1, x2) as

ũ(ξ1, ξ2, x3;x
′
3) =

∞∫

0

∞∫

0

u(x; (0, 0, x′3))e
iξαxαdx1dx2 (243)

The equilibrium equation then becomes:

Ci3k3ũ
C
kh,33 − i(Ciαk3 + Ci3kα)ξαũ

C
kh,3 − Ciαkβξαξβũ

C
kh = 0 (244)

where the Greek subscript α=1 or 2, whereas Roman subscripts range over 1,2,3.

The general solution of Equation (244) can be expressed in a compact form as (Yang and
Pan 2002a):

ũC(ξ1, ξ2, x3;x
′
3) = iη−1(Ā < e−ip̄ηx3 > V + A < e−ipηx3 > W) (245)

where (η, θ) are the polar coordinates of (ξ1, ξ2) (ξ1 = η cos θ, ξ2 = η sin θ), V and W are unknown
functions (of η, θ and x′3), < e−ipηx3 >= diag[e−ip1ηx3 , e−ip2ηx3 , e−ip3ηx3 ]. pi (Impi > 0) and A =
(a1,a2,a3) are the eigenvalues and eigen-matrix of the generalized Stroh eigen-problem (Ting 1996):

[Q + piR + RT ) + p2
i T]ai = 0 (246)

Qik = Cijksnjns, Rik = Cijksnjms, Tik = Cijksmjms

with n = [cos θ, sin θ, 0]T and m = [0, 0, 1]T .
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The displacement gradient for the complementary solution is:

ũC
,α(ξ1, ξ2, x3;x

′
3) = nα(Ā < e−ip̄ηx3 > V + A < e−ipηx3 > W) (247)

The induced stress field will then be: SC
ijh(x,x′) = Cijklu

C
kh,l(x,x

′). We will separate the field
into two contributions: (1) out-of-plane stresses t = (S13h, S23h, S33h), and (2) in-plane stresses
s = (S11h, S12h, S22h). In the transformed domain, these can be expressed as (Yang and Pan 2002a):

t̃C(ξ1, ξ2, x3;x
′
3) = B̄ < e−ip̄ηx3 > V + B < e−ipηx3 > W (248)

s̃C(ξ1, ξ2, x3;x
′
3) = C̄ < e−ip̄ηx3 > V + C < e−ipηx3 > W (249)

The matrices B = (b1,b2,b3) and C = (c1, c2, c3) are related to the Stroh eigen-matrix A as

bi = (RT + piT)ai, ci = Diai (250)

with Dkli = C1klαnα + piC1kl3 for k = 1, 2, and D3li = C22lαnα + piC22l3.

Note that for a half space x3 ≤ 0, V = 0, while for x3 ≥ 0, W = 0.

In order to impose the appropriate boundary conditions for layered materials, the transformed
Green’s tensor in an infinite space is needed. This is given by:

G̃∞(ξ1, ξ2, x3;x
′
3) = iη−1

{
A < e−ipη(x3−x′

3) > AT , x3 < x′3
−Ā < e−ip̄η(x3−x′

3) > ĀT , x3 > x′3
(251)

We determine here the complementary terms necessary for obtaining full solutions for dislocation
loops in half-space, bi-materials, and in general anisotropic layered media.

Dislocation in an Anisotropic Half-Space

Let’s assume that a dislocation loop is situated in an anisotropic half-space, occupying x3 ≤ 0
and having a free surface on x3 = 0. The surface equilibrium boundary condition is expressed as:

[SC
i3h(x,x′) + S∞

i3h(x − x′)] |x3=0 = 0 (252)

In the transformed domain, we have:

S̃C
i3h(x,x′)|x3=0 = t̃Cih|x3=0 = BW , (253)

S̃∞
i3h(x − x′) = Ci3klCpqmnεlnhbmG̃

∞
kp,q(x − x′)

= −iξαCi3klCpαmnεlnhbmG̃
∞
kp + Ci3klCp3mnεlnhbmG̃

∞
kp,3 . (254)

Substituting (251) (for x′3 < x3 ≤ 0) into (254), we obtain:

S̃∞
i3h |x3=0 = λikhpq

[
nq(−Ā < eip̄ηx′

3 > ĀT )kp +mq(−Ā < eip̄ηx′

3 >< p̄ > ĀT )kp

]
(255)

where λikhpq = Ci3klCpqmnεlnhbm.
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Substituting (253) and (255) into the free traction surface boundary condition (in the trans-
formed domain): S̃C

i3h(x,x′)|x3=0 + S̃∞
i3h|x3=0 = 0, we get:

W = B−1λikhpq

[
nq(Ā < eip̄ηx′

3 > ĀT )kp +mq(Ā < eip̄ηx′

3 >< p̄ > ĀT )kp

]
(256)

The unknown coefficient W in the complementary solution is thus determined. Substituting
(256) into Equations (245), (248) and (249) determines the complementary parts of the displacement
vector and stress tensor. These are complex explicit expressions, but can be written in the following
forms:

ũC = iη−1J2 < e−ir1η > J1 < e−ir0η > J0 (257)

for the displacement vector, and

t̃C = J2 < e−ir1η > J1 < e−ir0η > J0 (258)

for the traction tensor. The same expression is also obtained for the in-plane tensor s̃. In Equations
(257) and (258), the tensors Jn(θ) and rn(θ) are independent of η, but are functions of θ. These
solutions are in the transformed domain, and need to be transformed back to the physical domain
by the inverse Fourier Transform:

f(x1 − x′1, x2 − x′2, x3, x
′

3) =
1

(2π)2

∞∫

0

2π∫

0

ηf̃(η, θ, x3, x
′

3)e
−iη[(x1−x′

1) cos θ+(x2−x′

2) sin θ)]dθdη. (259)

Carrying out the first integral over (0 < η < ∞), the 2-D inverse transformation is reduced to a
1-D integral (Yang and Pan 2002a). The reduced integrals for the elastic fields are given by:

uC
ih =

1

(2π)2

2π∮

0

Hih

s
dθ , (260)

tCih = − 1

(2π)2

2π∮

0

Hih

s2
dθ , (261)

with Hih = (Jk2)2(Jk2k1)1(Jk1)0, and s = (rk2)1 + (rk1)0 + (x1 − x′1) cos θ + (x2 − x′2) sin θ. Note
that sih has the same expression as that of tih, and that all these functions have their own Hih

(different from each other), but share the same s. Thus, the complementary parts of the elastic
field of a dislocation in a half-space can be evaluated by line integrals over the interval [0, 2π].
The complementary parts plus the infinite-space solutions are the total elastic fields due to an
infinitesimal dislocation segment, and the elastic field due to a dislocation loop is obtained through
the line integrals (240) and (241).

Dislocation in Perfectly-Bonded, Anisotropic Two Half-spaces

Consider an anisotropic bi-material full space, where the lower half-space (x3 < 0) is occupied
by material (0), the upper half-space (x3 > 0) by material (1), and quantities in them are denoted
by the corresponding superscripts (0) and (1), respectively. Suppose now that the interface (at
x3 = 0) is perfectly bonded. This requires the continuity of the displacement and traction vectors
across the interface, i.e.

u(0)|x3=0− = u(1)|x3=0+ t(0)|x3=0− = t(1)|x3=0+ (262)
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Instead of the displacement continuity condition (262), however, we will use an equivalent con-
dition on the tangential displacement gradient, given by (Hill 1961):

u(0)
,α |x3=0− = u(1)

,α |x3=0+ (263)

Here, α = 1 or 2, u,α is the in-plane component of the displacement gradient (or called tangential
distortion).

Without loss of generality, we assume that we have an infinitesimal dislocation segment, located
in material (0). We express the solution for the displacement gradient in material (0) as:

ũ
(0)
,j = ũ

(0)∞
,j + ũ

(0)C
,j = β̃

(0)∞
jih + njA

(0) < e−ip(0)ηx3 > W (264)

The first term ũ
(0)∞
,j corresponds to the homogeneous full-space solution, which is known from

Equation (237), with the elastic properties of material (0). The second term corresponds to the
complementary solution due to the interface. Correspondingly, the stress field is also separated into
two components, and the traction vector can be expressed as:

t̃(0) = t̃(0)∞ + t̃(0)C = S̃
(0)∞
i3h + B(0) < e−ip(0)ηx3 > W (265)

where S
(0)∞
i3h is known from Equation (227), with the elastic properties of material (0).

Likewise, the solutions in material (1) due to the infinitesimal dislocation segment in material
(0) can also be separated. Thus, the displacement gradient in material (1) is expressed as:

ũ
(1)
,j = ũ

(0)∞
,j + ũ

(1)C
,j = β̃

(0)∞
jih + njĀ

(1) < e−ip̄(1)ηx3 > V (266)

The first term ũ
(0)∞
,j is the known full-space solution, with the elastic properties of material (0),

while the second term is the complementary solution (which is to be determined). The stress field

in material (1) can be derived from ũ
(1)
,j , giving the traction field as:

t̃(1) = t̃(1)∞ + t̃(1)C = S̃
(1)∞
i3h + B̄(1) < e−ip̄(0)ηx3 > V (267)

with
S

(1)∞
i3h = C

(1)
ijklC

(0)
pqmnεlnhbmG

(0)∞
kp,q (x − x′) (268)

as the traction field in full-space material (1) due to the displacement field ũ(0).

Substituting Equations (264)-(268) into the interface conditions, we have:

B(0)W + S̃
(0)∞
i3h |x3=0 = B̄(1)V + S̃

(1)∞
i3h |x3=0 (269)

nαA(0)W + β̃
(0)∞
αih |x3=0 = nαĀ(1)V + β̃

(0)∞
αih |x3=0 (270)

Finally, the full solution is obtained as:

W = −(B̄(1)Ā(1)−1A(0) − B(0))−1∆S̃∞
i3h, V = (B(0)A(0)−1Ā(1) − B̄(1))−1∆S̃∞

i3h (271)
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with

∆S̃∞

i3h = S̃
(1)∞
i3h |x3=0 − S̃

(0)∞
i3h |x3=0 = (C

(1)
ijkl − C

(0)
ijkl)C

(0)
pqmnεlnhbmG̃

(0)∞
kp,q (x − x′)|x3=0,

G̃
(0)∞
kp,q |x3=0 = −nq(Ā

(0) < eip̄
(0)ηx′

3 > Ā(0)T )kp −mq(Ā
(0) < eip̄

(0)ηx′

3 >< p̄(0) > Ā(0)T )kp

(272)

The displacement and stress (including displacement distortion) solutions have the same forms
as Equations (257) and (258), respectively, and all real fields are obtained by 1D integrals, as in
Equations (260) and (261).

Dislocation in an Anisotropic Multi-layer Material

Consider a laterally infinite composite thin film made of different layers. Each layer is homoge-
nous, anisotropic and of uniform thickness. Interfaces between layers are assumed to be perfectly
bonded. A coordinate system (x1, x2, x3) is attached to the the thin film, with the x3-axis perpen-
dicular to all interfaces. A general layer n occupies the space zn−1 ≤ x3 ≤ zn, and quantities with
its properties are denoted by corresponding superscripts (n). Assume now that an infinitesimal
dislocation segment is located in layer k. The displacement gradient in layer n can be expressed as:

ũ
(n)
,j = β̃

(k)∞
jih + nj [Ā

(n) < e−ip̄(n)η(x3−zn−1) > V(n) + A(n) < e−ip(n)η(x3−zn) > W(n)] (273)

The first term is the full-space solution, given by Equation (237), with the elastic properties of
material k. The other terms correspond to the complementary part of the solution. Accordingly,
the out-of-plane traction vector is given by:

t̃(n) = S̃
(n)∞
i3h + [B̄(n) < e−ip̄(n)η(x3−zn−1) > V(n) + B(n) < e−ip(n)η(x3−zn) > W(n)] (274)

with S
(n)∞
i3h = C

(n)
ijklC

(k)
pqmnεlnhbmG

(k)∞
kp,q (x − x′), and the solution for the in-plane traction s̃(n) is

similar to that given by (274).

Perfectly bonded conditions along interfaces require that the traction and displacement (or
tangential distortion) vectors are continuous. For interface n, this gives:

B̄(n) < e−ip̄(n)η(zn−zn−1) > V(n) + B(n)W(n) + S̃
(n)∞
i3h |x3=0

= B̄(n+1)V(n+1) + B(n+1) < e−ip(n+1)η(zn−zn+1) > W(n+1) + S̃
(n+1)∞
i3h |x3=0

(275)

Ā(n) < e−ip̄(n)η(zn−zn−1) > V(n) + A(n)W(n) ,

= Ā(n+1)V(n+1) + A(n+1) < e−ip(n+1)η(zn−zn+1) > W(n+1)

(276)

With all interface, bottom and top layer (half-space or free surface) boundary conditions, a
system of algebraic equations can be formed. Solving these equations, the elastic field is fully
determined.

Peach-Koehler Forces in Layered Materials

We give here an example of a 3-D dislocation loop of a simple circular geometry to verify the
present line integral method, and to illustrate the main characteristics of dislocation fields near
interfaces.
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Figure 15: Schematic for the geometry of a 3-D circular dislocation loop near an interface or free
surface

Consider a circular dislocation loop in a half-space substrate. The loop lies near a free surface
or an interface, as shown in Figure (4.3.4). To be specific, we take the substrate material, which
extends for all z < 0, to be an anisotropic aluminium crystal. The aluminum substrate is bound by
a free surface or is perfectly bonded with an anisotropic nickel half-space along the surface z = 0.
Both Al and Ni are fcc cubic anisotropic crystals, with their crystallographic axes [100],[010], and
[001] lined up along the x = 1, y = 2, and z = 3 coordinate axes, respectively. The elastic
constants needed for the present calculations are obtained from reference ((Hirth and Lothe 1982)).
The circular dislocation loop lies on the (111) plane, its Burger’s vector b is taken along the
[1̄10] direction. The loop radius, R=200 b, and its center is located at z=-180 b, where b=|b|
is the magnitude of the Burgers vector of aluminum. For verification of the present line integral
results, we show in Figure (16) the results of stress field components for infinite space and the exact
surface integral solutions. Calculations of surface integral, with Equation (235) as the starting point
are performed using an evaluation of Green’s functions and their derivatives in the corresponding
materials (Han and Ghoniem 2004). We follow the procedure of Pan and coworkers for the numerical
determination of Green’s functions in anisotropic bi-materials and multilayered materials (Pan and
Yuan 1999, Yang and Pan 2002b). Stress components along the z-axis, induced by the dislocation
loop, are shown in Figure (16-a) for the case of free surface, and Figure (16-b) for the interface
case. Because of symmetry, σ11 = −σ22, σ13 = −σ23, σ12 = σ33 = 0, and thus we only show the
stress components σ22 and σ23. It can be observed from the figures that the numerical results of
the present line integral method are nearly identical to those obtained by the surface integration
method (Han and Ghoniem 2004) for the case of a dislocation in half-space, and are in good
agreement when the dislocation loop is near the interface. As the dislocation loop approaches the
free surface, the out-of-plane stress components are forced to decrease till they become identically
zero at the surface. However, in-plane stresses increase in order to satisfy overall equilibrium.
When the aluminum substrate is bonded to a harder half-space (e.g. nickel), out-of-plane stresses
are continuous across the interface, and larger than their corresponding values in infinite space.
In-plane stress components, on the other hand, experience jumps because of the discontinuity in
the elastic properties across the interface. The magnitude of stress increases across the interface,
moving from the softer (aluminum) to the harder substrate (nickel).
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In general, the stresses near a free surface are larger than their corresponding values near an
interface to a harder material. The influence of the interface on the disturbance of the elastic field
is somewhat local, and is limited to within a distance of a few hundred lattice constants from the
free surface or an interface.
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Dislocation-Interface Interaction

Dislocations move along the direction of the Peach-Koehler force exerted on them by the local
elastic field, which of course includes image stresses due to interfaces in addition to applied and
self-forces. The speed of the motion is controlled by the overall mobility, however, and that may
include many contributions from interactions with electrons, phonons or other dispersed barriers.
Complex DD simulations typically solve for the motion of interacting dislocation ensembles. In this
section, we focus on understanding the influence of image forces due to interfaces or free surfaces on
the magnitude and distribution of the Peach-Koehler force. This is given by: f = σ · b× dl, where
the virtual force f is exerted on a line segment dl with the Burgers vector b, and situated in the
stress field σ. The stress field may originate from various sources, such as applied forces, residual
stresses, image stresses (due to boundary conditions), other dislocations, and even the dislocation
loop itself (self-forces).

When a dislocation resides in a finite medium, adjustments of the stress field to satisfy surface or
interface boundary conditions result in local changes of the stress tensor close to the dislocation line.
Thus, calculations of the self-force for this altered stress field, which requires integrals along the
dislocation line, would also include the influence of the boundary adjustment. Thus, the self-force
would subsume the image effects of the boundary, and would be geometry dependent. To remove
such ambiguities, and to clearly determine the effects of the interface or boundary, the stress field
induced by a dislocation is divided into two parts: the full-space stress σ∞, and the image stress
σC . The stress σ∞ corresponds to that induced by the dislocation in a homogeneous and infinite
space, with elastic properties of the material where most of the dislocation resides. The stress field
σ∞ of a dislocation in an infinite anisotropic material can be calculated by the line integral given
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Figure 16: Stress components along the z-axis for a circular dislocation loop (see Figure (4.3.4))
in (a) Al half-space and (b) Al-Ni bi-material. Solid lines represent surface integral results, small
square symbols: line integral results, and dashed lines: infinite space solutions.

by Eq1uation (226), and will induce a self-force on the dislocation. Because of the singularity of σ∞

along the dislocation line, an average field is obtained by the Brown procedure (Brown 1964), or
alternatively through the Gavazza-Barnett limiting process (Gavazza and Barnett 1976). Details
of the numerical procedure for the stress field and self-force of a dislocation loop in an infinite
anisotropic material are found in our recent work (Han et al. 2003). The force induced by the
complementary part of the stress field, σC , which reflects the interface effect on modifying the
infinite medium stress field of the dislocation, will be termed henceforth the image force, and is
calculated directly by the Peach-Koehler formula.

We illustrate here the effects of free surfaces and interfaces on dislocation image forces for a
typical dislocation configuration in an Al film, of width h, on a Cu substrate. The system will is
modeled as a thin film that is perfectly bonded to a half-space. The Al film may have a free surface
(e.g. an un-oxidized film in vacuum), or is capped by a thin Al2O3 layer of width hc. An oblong
dislocation loop is located on the {111}-plane in the middle of the Al film, and has a Burgers
vector of b = a

2 < 11̄0 >, and a is the lattice constant, as shown in Figure (17). The oblong loop is
composed of two straight segments parallel to the interfaces, which typically result from interface
image forces as will be shown later, and are connected by two half-circular segments. The length
(straight section) and width of the oblong dislocation are L and D, respectively, with L = 2D and
D = h. The distribution of image forces on the loop is shown in Figures (17-a) through (17-c)
for different thicknesses of the capped layer. The image force per unit length in these figures is
normalized by b2 × 1010 (Pa)/h.

The image force distribution on the straight dislocation segment closest to the free surface is
attractive, as one expects. However, its magnitude and direction cannot be obtained through a
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Figure 17: Image force distribution on an oblong dislocation loop in a thin Al layer on a Cu
substrate with an additional aluminum oxide film on top (a) the layer is capped with an Al2O3 film
of thickness hc=0.1 h (b), and 1.0 h.
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simple geometric construction by reflecting the dislocation loop across the interface. It is seen from
Figure (17-a) that the image force on the loop switches from attractive near the free surface to
repulsive near the harder Cu substrate. When the Al film is capped by a harder oxide layer, the
image force is found to have a strong dependence on the capping layer thickness, as long as it is
less than the thickness of the thin film itself. Thus, for a thin film capped with several thinner
layers, the image force would have major contributions from several neighboring interfaces. When
the thickness of the capping layer is larger than the film thickness, as shown in Figure (17-c), the
distribution of the image force tends to that generated by a semi-infinite medium. It is interesting
to note that while the dislocation loop is attracted to the free surface, which would accelerate
the formation of a surface step, it is repelled by the harder oxide film. A very thin oxide layer
(hc = 0.1h), as shown in Figure (17-b), almost balances the repulsive Cu interface forces on the
middle curved sections of the loop rendering them force-free. This result cannot be expected from
geometric image constructions as well.

5 Applications of Nanomechanics & Micromechanics

5.1 Ab Intio

Electronic structure calculations based on DFT also can be applied for studies of nonperiodic
systems, such as those containing point, planar or line defects, or quantum dots if a periodic
supercell is used. The supercell contains the defect surrounded by a region of bulk crystal or
vacuum for the case of a surface. Periodic boundary conditions are applied to the supercell so
that the supercell is reproduced throughout space. It is essential to include enough bulk solid (or
vacuum) in the supercell to prevent the defects in neighboring cells from interacting appreciably
with each other. The independence of defects in neighboring cells can be checked by increasing
the volume of the supercell until the calculated defect energy is converged. Using the supercell
geometry one can study even molecules (Rappe, Joannopoulos and Bash (1992)), provided that the
supercell is large enough so that the interactions between the molecules are negligible.

Ab initio calculations have been recently applied to study the dislocation core properties of
isolated < 111 > screw dislocations in bcc Mo and Ta (Woodward and Rao (2002)). Alternatively,
the semi-discrete variational Peierls-Nabarro (SVPN) model has come to serve as a link between
atomistic and continuum approaches, by providing a means to incorporate information obtained
from ab initio calculations directly into continuum models(Lu, Kioussis, Bulatov and Kaxiras 2000,
Lu, Zhang, Kioussis and Kaxiras 2001, Lu, Bulatov and Kioussis 2002). This approach has been
shown to predict reliable dislocation core properties by comparing its predictions to direct atomistic
simulations based on the same force law as that used for the γ-surface calculations (Lu et al. 2000).
The uniqueness of the approach when combined with ab initio calculations for the energetics is that
it produces essentially an atomistic simulation for dislocation core properties without suffering from
the uncertainties associated with empirical potentials. For example, atomistic simulations based
on EAM potentials predict that dislocations in Al will dissociate into partials while experimentally
no such dissociation is observed, a discrepancy which can be traced to the fact the EAM potentials
underestimate the intrinsic stacking fault energy (Lu et al. 2000).

In the SVPN approach, the equilibrium structure of a dislocation is obtained by minimizing the
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dislocation energy functional

Udisl = Uelastic + Umisfit + Ustress +Kb2lnL, (277)

with respect to the dislocation displacement density (Lu et al. 2000). The γ-surface determined
from ab initio calculations enters the equation through the Umisfit term. We identify the dislocation
configuration-dependent part of the elastic energy and the misfit energy as the core energy, Ucore =
Uelastic +Umisfit, while the configuration-independent part of the elastic energy Kb2lnL is excluded
because it is irrelevant in the variational procedure and it has no contribution to the dislocation core
structure. The response of a dislocation to an applied stress is achieved by the minimization of the
energy functional at the given value of the applied stress. An instability is reached when an optimal
solution for the density distribution no longer exists, which is manifested numerically by the failure
of the minimization procedure to convergence. The Peierls stress is then defined as the critical value
of the applied stress giving rise to this instability. The resultant approach can then be applied to
problems associated with dislocation core structure and the cross process, that neither atomistic nor
conventional continuum models could handle separately. Therefore, this approach is particularly
useful for studying the interaction of impurities with dislocations when empirical potentials are
either not available or not reliable to deal with such multi-element systems. Furthermore, it allows
to study general trends in dislocation core properties and to correlate them with specific features
of the underlying electronic structure.

5.1.1 Hydrogen Enhanced Local Plasticity (HELP)

One of the first successful applications of this approach was the elucidation of the atomistic
mechanism responsible for the Hydrogen-Enhanced Local Plasticity (HELP) in aluminum ((Lu
et al. 2001)). The γ-surface for both the pure Al and the Al+H system, shown in 18-a and -b,
respectively, indicate an overall reduction in energy in the presence of H. This in turn not only
facilitates dislocation emission from the crack tip but also enhances the dislocation mobility dra-
matically. The H is found to bind strongly to dislocation cores and that the binding energy is a
function of dislocation character. These findings explain the experimentally observed restriction of
the cross-slip process and slip planarity in the presence of H. The dislocations do not dissociate
into partials even though the intrinsic stacking fault energy is reduced by 40% in the presence of
H.

5.1.2 Dislocation Cross-slip

Recently, the SVPN was extended so as to take into account two intersecting slip planes, thus
allowing the study of cross-slip properties (Lu et al. 2002, G. Lu, Bulatov and Kioussis 2004).
This novel model was applied to study the dislocation constriction and cross-slip process in two
fcc metals, Al and Ag, exhibiting different deformation properties. The results of the dislocation
density ρ(x) in the primary and cross-slip planes for Al and Ag are presented in Figures (5.1.2)-
a and (5.1.2)-b, respectively. The screw dislocation in Al which starts out at the primary plane
spontaneously spreads into the cross-slip plane, as the density peak at the cross-slip plane indicates.
As expected, the edge component of the density is zero at the cross-slip plane because only the
screw displacement can cross-slip. On the other hand, the screw dislocation in Ag dissociates into
two partials, separated by 7.8 b (≈ 22 Å), in excellent agreement with the experimental value of

83



(a)

0
0.1
0.2
0.3
0.4
0.5

(a)

(b)

0
0.1
0.2
0.3
0.4
0.5

(b)

Figure 18: The γ surfaces (J/m2 for displacements along a (111) plane for (a) pure Al and (b)
Al+H systems. (After Lu et al. (2001))
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20 Å in TEM measurements (Cockayne, Jenkins and Ray 1971). The left (right) partial has a
positive (negative) edge component of the Burgers vector represented by the positive (negative)
density. The integral of the edge density over all atomic sites is zero, corresponding to a pure screw
dislocation. These partial dislocations cannot cross-slip, as the arrows in Figure 3(a) indicate,
without first annihilating their edge components, and the dislocation density on the cross-slip
plane is essentially zero. Apparently, the lack of obvious dissociation in Al stems from the fact that
Al has a much higher intrinsic stacking fault energy than Ag. The absence of obvious dissociation
into partials in Al is also consistent with experiment (Duesbery 1989).

5.1.3 Dislocation Core Properties

The strengthening of alloys relative to pure metals has been a subject of technological and scientific
interest for centuries. Al-Cu alloys are the oldest in which age hardening has been understood to
arise from solute precipitation. In age-hardened solid solution alloys small amounts of solute element
(e.g. Cu) are added to the pure metal (e.g. Al) at high temperatures (where there is solubility)
and the alloy is quenched down in temperature. With time the supersaturated solute atoms begin
to precipitate. The aged alloy becomes stronger because dislocation motion through the crystal is
impeded by the precipitate itself and by the elastic strain field surrounding the precipitate. These
crystallographically coherent precipitates (i.e. without dislocations between the precipitates and
the matrix) are collectively known as Guinier-Preston (GP) zones (Guimier 1938, Preston 1938).

The GP zones are metastable phases, with a long relaxation time. In the Al-Cu system the
Cu atoms coherently precipitate in the {100} planes of the Al matrix. The shape and size of
the precipitates has been a subject of long experimental and theoretical study. The coherent
precipitation sequence was determined in the 50’s as solid solution GP1 GP2. There has been some
controversy as to what the structure of the GP zones is, but the following is usually accepted:
GP1 is a single, almost pure, (100) Cu layer formed in the initial stages of precipitation; GP2 is
primarily (but not only) an ordered platelet of two Cu 100 planes separated by three 100 planes of
Al. Such a an ordered structure for GP2 has been inferred both from superlattice reflections in X-
ray measurements (Karĺik and Jouffrey 1996), and from first-principles thermodynamic calculations
(Wolverton 1999). While the Al3Cu1 was found to be the most stable, the Al1Cu1 (L10) ordered
structure is very close in energy. We have used the latter structure to model the GP zone since it
involves smaller supercells and hence is computationally less expensive.

To simulate the block shearing process, we employ a supercell consisting of six atomic layers in
the < 111 > direction. We have considered two different cases of alloying: In the first case, which
we will refer to as Al-Cu(a), we substitute one Al atom with a Cu atom on the shear layer, i.e. the
shear plane consists of one Cu atom and three Al atoms with all other layers being pure Al (left
panel in Figure (5.1.3-a). In the second case, which we will refer to as Al-Cu(b), each (111) layer
consists of interchanging aluminum and copper chains along the < 112 > direction (left panel in
Figure (5.1.3-b). The second case corresponds to the L10 ordered intermetallic with alternating
Al and Cu (001) planes. The calculations were performed at the theoretically equilibrium lattice
constant a=4.0 Å of pure Al, since the content of Cu in the alloys under study is about 1-2% and
the Cu precipitates in the Al matrix are coherent. The generalized stacking fault energy (GSF) (γ
surface) for both the Al-Cu(a) and Al-Cu(b) cases is shown in the right panels of Figures (5.1.3-a)
and (5.1.3-b), respectively. For Al-Cu(a) the intrinsic stacking fault (ISF) energy is reduced to
0.122J/m2 from the value of 0.164J/m2 in pure Al. The unstable-stacking energy is also reduced
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Figure 19: Dislocation displacement density ρ(x) for Al (a) and Ag (b). The peaks in the density
plot in Figure 7(b) represent partial dislocations.
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Figure 20: Left panel: positions of atoms for three successive (111) layers for the Al-Cu case (a)
where one Al atom on the shear plane has been substituted with a Cu atom; and for the Al-Cu case
(b) consisting of the L10 structure, with alternating Al and Cu (001) planes. The large, medium
and small circles represent atoms in the three (111) planes, respectively. Open (closed) circles
denote Cu (Al) atoms. Right panel: The GSF energy surface for displacements on a (111) plane
for the Al-Cu case (a) and for the Al-Cu case (b).

slightly from 0.224J/m2 for pure Al to 0.175J/m2. For Al-Cu(b) the GSF energy surface changes
dramatically compared to that of pure Al. The ISF energy vanishes along [112] and in fact becomes
negative -0.102J/m2 along the [121] direction. The average of the two values compares well with
the value of about -0.050J/m2 for the 50 at.% random Al-Cu alloy (Schulthess, Turchi, Gonis and
Nieh 1998).

For Al-Cu(a) the core energy for all four dislocations is higher than that for the pure Al case.
We find that the Peierls stress for the screw, 30◦, 60◦ dislocations is lower than for the pure Al
case. On the other hand, the Peierls stress for the edge dislocation is an order of magnitude higher
than that for the pure Al, which is probably due to the fact that the edge dislocation dissociates
into partials for Al-Cu(a). In sharp contrast, all four dislocations for the Al-Cu(b) system have
lower core energies than for Al-Cu(a), and the Peierls stress of all is an order of magnitude higher
than that for Al-Cu(a), suggesting a strengthening mechanism.

5.2 MD Simulations

Applications of MD simulations to the nano-mechanics of point defects, dislocations, and interfaces
(free surfaces and grain boundaries) under applied stress will be presented in this section. Under
stress, the normal diffusion process governed by point defect motion is polarized by the action of
the stress field. The diffusion process of a point defect has been investigated by a combination
of molecular statics (MS) and MD simulations. Diffusion anisotropy, which is intrinsic in low
symmetry crystals, can be enhanced by the action of stress (Woo, Huang and Zhu 2002). The
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stress effect on a point defect, particularly its formation and migration energies, is crucial to the
analysis of kinetic processes, but this is usually not a first order effect in nano-mechanics.

5.2.1 Dislocation Motion

MD simulations of dislocation mechanics has received much attention in recent years because of
the importance of dislocations in plasticity and fracture. In dislocation statics, one is primarily
concerned with the final core structure of one or a few dislocations. The discovery of three-fold
symmetry of the screw dislocation in bcc metals is a direct result of the applications of dislocation
statics (Vitek 1974, Duesbery and Vitek 1998, Rao and Woodward 2001, Xu and Moriarty 1996,
Wang, Strachan, Cagin and Goddard 2001a). MD simulations have provided much insight to
details of kink-kink (Bulatov, Yip and Argon 1995), dislocation-dislocation (Xu and Moriarty 1998,
Zhou, Preston, Lomdahl and Beazley 1998, Rodney and Phillips 1999, Rodney and Martin 2000),
dislocation-point-defect (Justo, de Koning, Cai and Bulatov 2001), and dislocation-grain boundary
(Ortiz and Phillips 1999). In the transonic velocity range, MD simulations have revealed new
mechanisms and possibilities. Gumbsch and Gao (Gumbsch and Gao 1999) demonstrated that
transonic dislocations are possible. Later, it was shown that a transonic dislocation can cross the
sound barrier back and forth (Shi, Huang and Woo 2002, Li and Shi 2002). The availability of fast
dislocations also enabled the study of dislocation dipole stability at the atomic level (Wang, Woo
and Huang 2001b), to serve as direct confirmation of the elasticity analysis (Huang, Ghoniem, Diaz
de la Rubia, Rhee, Zbib and Hirth 1999). As shown in Figure (21), the simulations further reveal
that a dislocation dipole can be stabilized even with an overshoot; a direct result of the finite speed
of wave propagation.

MD simulations have also been applied in studies of dislocation emission from crack tips (Bulatov,
Abraham, Kubin, Devincre and Yip 1998), nucleation of dislocations from surfaces (Liu, Shi, Huang
and Woo 2002a, Liu, Shi, Woo and Huang 2002b), and dislocation nucleation in nanocrystals
(Van Swygenhoven, Caro and Farkas 2001, Cleri, Wolf, Yip and Phillpot 1997). One of the chal-
lenging problems that remain is treating the interaction of boundaries with elastic waves emitted
by moving dislocation. Several recent studies have attempted to dampen out boundary effects
(Ohsawa and Kuramoto 1999, Cai et al. 2000, Wang et al. 2001b), but the problem is still not
satisfactorily solved.

5.2.2 Grain Growth

Similar to point defects and dislocations, interfaces (e.g. surfaces and grain boundaries) respond
to mechanical loading. In connection with dislocations, surfaces are nucleation sites. Although
grain boundaries also have this function, they are more crucial in facilitating or blocking other
deformation mechanisms. Using a multiscale approach, (Ortiz and Phillips 1999) have studied the
interaction of a dislocation with a grain boundary. It is well established that grain boundaries serve
as barriers to dislocation motion and give rise to the Hall-Petch effect, which shows that the strength
of materials is inversely proportional to the square root of its grain size. However, for materials
with grain sizes below a few nanometers, materials strength begins to decline when the grain
size decreases (Van Swygenhoven 2002). At the nanoscale, grain boundaries facilitate mechanical
deformation through grain boundary sliding. At the same time, the grain structure evolves as well,
and this evolution in turn affects the mechanical deformation. Taking thin slices of polycrystalline
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Figure 21: Three snapshots of a pair of edge dislocations in a dipole configuration, showing the
stabilization of a dipole despite the dynamic overshoot

( After (Wang et al. 2001b))

nano-grains, Wolf and co-workers (Schonfelder, Wolf, Phillpot and Furtkamp 1997, Schonfelder,
Keblinski, Wolf and Phillpot 1999) have investigated mechanisms of grain boundaries interactions.
As shown in Figure (22), high-angle grain boundaries shrink and that quadruple junctions are not
stable and are reduced to triple junctions.

Identification of dislocations in MD simulations is straightforward if the dislocation configuration
is simple. One may rely on constructing the Burgers circuit, using disregistry functions (such as the
centro-symmetry parameter), or tracking the atomic level stress or energy (Chang, Cai, Bulatov
and Yip 2001, Hamilton, Stumpf, Bromann, Giovannini, Kern and Brune 1999, Hamilton 1997).
When complex dislocation configurations are involved, unambiguous identification of dislocation
cores may require a combination of several of the methods discussed above. Before closing this sec-
tion, let’s examine the type of information that can be passed on to larger length scales. Here, we
consider three types of defects: point defect, dislocation, and interface (particularly grain bound-
ary). Information on defect energetics and diffusion tensors obtained by MD or MS simulations
provide parameters to rate equations and Monte Carlo methods describing microstructure evolu-
tions. Dislocation energetics (e.g. kink-pair formation energy and dislocation core energy), Peierls
stress and dislocation mobility are used as input parameters in dislocation dynamics simulations at
the mesoscopic level (Bulatov et al. 1998). Finally, dislocation nucleation conditions and interac-
tion mechanisms with other defects (dislocations or grain boundaries or other interfaces) from MD
simulations are critical to dislocation dynamics simulations.
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Figure 22: MD simulations of nano-scale grain boundary evolution under externally applied stress
. Time is labelled in each frame. ”H” indicates high-angle, and ”L” low-angle grain boundary.

( After (Schonfelder et al. 1999), courtesy of D. Wolf)
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Figure 23: Snapshots of a dislocation in Cu-Ni nanolayers. (a) Left: the dislocation is in Ni, and
the applied shear stress is 400 MPa; (b) Right: the dislocation is originally in Cu, and the applied
shear stress is 800 MPa

( Courtesy Lan Li, UCLA
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Table 3: Parameters used in the present simulations

Em(eV) a(Å) R(a) T (K) ω0(s
−1) G(GPa) ν

0.02 2.867 3.0 300.0 2.5 × 1013 81.8 0.29

5.2.3 Nano-strength

5.3 KMC Applications

5.3.1 Dislocation Decoration

Because of the significance of the effects of glissile SIA clusters on damage evolution, we first
establish the dynamics of their motion in the field of grown-in dislocations. The values of the
migration energy, diffusion pre-factors, and other input parameters for SIA diffusion used in this
work are listed in Table 3 (Osetsky et al. 2000a, Soneda and de la Rubia 2001). A computational
cell of 400a × 400a × 400a ( a = 2.867 Å is the lattice constant) is used with periodic boundary
conditions. The ratio of activation energy for Burgers rotation to the 1-D migration energy is set to
be 8. A slip dislocation loop lying on the 〈101〉 plane, with Burgers vector b = 1

2 〈1̄11〉 is introduced
into the simulation box. The dislocation loop consists of two curved segments and two straight
super-jog segments that are normal to the loop’s Burgers vector. A number of SIA clusters with
the same size, R, were initially randomly distributed in the simulation box, and their initial jump
directions were also randomly specified. The initial SIA cluster density was varied in the range
5×1022−2×1023 m−3. When a cluster approaches the dislocation loop at distances closer than the
standoff distance (taken as 1.5 nm), the cluster is stopped, and all events related to it are removed
from the event table. When two SIA clusters approach one another within one atomic distance,
they coalesce and make a larger cluster.

One of the most striking features in the evolution of dislocation microstructure under cascade
damage conditions is the decoration of grown-in dislocations by loops (Stiegler and Bloom 1971,
Singh, Horsewell, Toft and Edwards 1995), which may even extend to form dislocation walls (Singh
et al. 1995). Most dislocations are observed to be heavily decorated by small, sessile interstitial
clusters.(Singh, Foreman and Trinkaus 1997) Figure (24) shows a TEM micrograph of pure iron
irradiated with fission neutrons at about 70 oC.(Eldrup, Singh, Zinkle, Byun and Farrell 2002)
Grown-in (slip) dislocations are clearly decorated with small defect clusters, and the formation of
loop rafts is significant.

5.3.2 Dislocation Pinning and Small Defect Rafts

To investigate the influence of cluster-cluster interactions on their motion, the grown-in disloca-
tion was removed, and the elastic interaction between clusters included in a new KMC simulation.
Mutual elastic interactions in between clusters was found to affect their distribution and motion
drastically. Because of mutual interaction, two clusters that are oriented along non-parallel crystal-
lographic orientations will either coalesce forming a larger one, or rotate and pin one another at a
short distance and move jointly in the same direction. Once two clusters are pinned together, they
have less chance to change their orientation, and therefore their motion becomes almost pure one-
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Figure 24: A TEM micrograph of pure Fe irradiated with fission neutrons at 70 oC to a displacement
dose level of 0.72 dpa.(Eldrup et al. 2002)

dimensional. As this process proceeds, some additional clusters may be trapped into this pinned
structure by changing their Burgers vectors. This self-organizing mechanism eventually results in
the occurrence of SIA rafts, which consist of a number of small dislocation loops with the same
direction of motion. This feature has been experimentally observed for some time (Trinkaus, Singh
and Foreman 1997).

A simulation of cluster motion integrating the influence of the internal stress field created by
grown-in dislocations, as well as the clusters themselves was also performed. Figure (25) shows
a typical defect evolution time sequence for 200 SIA clusters at 300 K. The effects of internal
dislocation fields, aided by cluster mutual elastic interactions, rendered most of the clusters virtually
immobile in the vicinity of the slip dislocation. Continuation of the decoration process results in the
initiation of a “dislocation wall”. Similar simulations were performed for smaller cluster density (50
SIA clusters), and also at higher temperature (600 K). The results indicate that SIA cluster density
seems to have a greater influence on the transient time for decoration than temperature. Under
higher temperature conditions, we find that the formation of dislocation decorations is faster than
at lower temperatures. The high temperature increases the thermal activities of clusters, which
makes clusters have more chance to approach the reaction range of internal dislocations. The
simulations also show that the rafting structure occurs more easily at lower temperatures.

Comparison with Experimental Data on Neutron-Irradiated Iron

We perform here KMC computer simulations for the microstructure evolution of pure Fe ir-
radiated with fission neutrons at 300 K, and compare the results to the experiments of Singh et
al.(Singh, Horsewell and Toft 1999), and Eldrup et al.(Eldrup et al. 2002) The simulation conditions
and procedures are first explained, followed by a discussion of the results.

Fitting MD-generated data for several metals, Bacon et al.(Bacon et al. 2000) showed that the
number of Frenkel pairs (NF ) is given by: NF = A(EPKA)m, where A and m are constants, and
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Figure 25: KMC simulation of 200 SIA clusters in the stress field of a 3-D dislocation loop. Dislo-
cation decoration and SIA cluster rafts are clearly observed, as indicated by the arrows. (a) 0 ns;
(b) 0.4 ns; (3) 0.7 ns; (d) 1.0 ns.

EPKA is the energy of the Primary Knock On Atom. On the other hand, the number of displaced
atoms can be written as: NP = PNt, where P is the displacement dose (dpa), and Nt the total
number of atoms in the system. Therefore, the displacement dose level corresponding to one cascade
can be readily calculated as:

P =
NF

Nt
=
A(EPKA)m

Nt
(278)

With the relationship between the cascade energy and damage dose, we can determine the number
and frequency of cascades required for producing a desired dose at a predetermined dose rate.

Point defect statistics for clusters generated by 40 KeV cascades in α-Fe (e.g. number, size
distribution, and mobility) were taken from the MD simulations of Bacon, Gao and Osetsky.(Bacon
et al. 2000) Soneda and Diaz de la Rubia (Soneda and Diaz de la Rubia 1998) have shown that
two thirds of the defects that escape from the parent cascade region are in the form of small SIA
clusters, which migrate in one dimension. Therefore, monodefects as well as relatively smaller
clusters were ignored in the present simulations. Room temperature neutron irradiation of iron
was simulated with a flux of 40 KeV cascades containing interstitial clusters of size > 4 atoms.

It has been shown by MD simulations (Trinkaus, Singh and Foreman 1993) that small loops
consisting of four, five and six atoms transform spontaneously from the faulted into the highly
glissile unfaulted configuration. In addition, the change in the Burgers vector of a cluster consisting
of four SIAs has been observed to occur in these studies. From the lifetime of one configuration, a
value of 0.4 eV is estimated for the energy barrier against this transformation.(Trinkaus et al. 1993)
The height of the barrier for orientation change is expected to increase significantly with increasing
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cluster size. MD studies show that small, strongly bounded interstitial clusters (two to about five-
SIA clusters) exhibit long-range, three-dimensional (3D) diffusion, which occurs by reorientation of
constituent < 111 > dumbbells from one < 111 > to another.(Soneda and de la Rubia 2001) As the
cluster size increases, thermal-activated reorientation from one Burgers vector to another becomes
increasingly more difficult to achieve, no 3-D motion is observed even at very high temperatures.

Osetsky et al.(Osetsky et al. 2000a) developed a generalized size dependence of cluster jump
frequency to describe the one-dimensional diffusional transport behavior of SIA clusters

ωn = ω0n
−S exp

(
−〈Em〉
kBT

)
(279)

where 〈Em〉 is the averaged effective activation energy, n the number of SIAs in the cluster, and
ω0 is a new, size-independent, pre-exponential factor. The value of 〈Em〉 was found not depending
on size and close to that of the individual crowdion. It is estimated for clusters containing up to
91 SIAs in iron that 〈Em〉 = 0.023 ± 0.003 eV for 1

2 〈111〉 clusters in bcc iron. By fitting to the
simulation results of various cases, the values ω0 = 6.1× 1012 s−1, S = 0.66 for Fe describe the MD
data very well, and were used in our KMC simulations.

Soneda and Diaz de la Rubia (Soneda and Diaz de la Rubia 1998) studied the direction change
frequency of 2-SIA and 3-SIA clusters in α-Fe using MD simulations and obtained the activation
energies of 0.09 eV and 0.27 eV for 2-SIA and 3-SIA clusters, respectively. Gao et al. (Gao, Henkel-
man, Weber, Corrales and Jonsson 2003) investigated possible transition states of interstitials and
small interstitial clusters in SiC and α-Fe using the dimer method. The activation energies of direc-
tional change were found to be 0.163, 0.133 and 0.342 eV for 1-, 2-, and 3-SIA clusters, respectively.
In our work, we assume that the relationship between the activation energy of directional change
for a interstitial cluster and the size of the cluster is linear, and is equal to 0.05 eV per interstitial
atom. In fact, MD simulations have shown that the motion of small SIA clusters and loops is
the result of the motion of individual crowdions,(Bacon et al. 2000, Osetsky et al. 2000a) and the
reorientation may occur in a one-by-one fashion.(Osetsky, Serra and Priego 2000b) The value of
0.05 eV/atom is probably an underestimation for the energy barrier for direction change of a small
cluster, say size less than four, but for larger clusters, it reflects the preferential 1-D motion of large
interstitial clusters. MD simulations revealed that defect structure of a cascade is characterized by a
vacancy-rich core surrounded by a shell of SIA clusters. We represent this vacancy-rich core region
as an immobile spherical recombination center. The size of a recombination center or nano-void is
given by an equivalent diameter. The number of vacancies in the core of a cascade is assumed to
follow a Gaussian distribution with mean value of 100 and a standard deviation of 8 vacancies.

5.3.3 Dose Dependence of Defect Density in Irradiated Materials

Doses up to 5.21 × 10−3 dpa were simulated at a displacement damage rate of 5 × 10−8 dpa/s,
and damage accumulation was studied as a function of dose. Figure ( 26 shows the interstitial
cluster density as a function of dose with and without recombination between SIA clusters and
nano-voids. In addition, SIA clusters containing more than 100 interstitial atoms ( diameter > 3
nm) are counted as visible defects. The corresponding cluster density is calculated and compared
with experimental data for bcc Fe irradiated at ' 70 oC in the HFIR reactor at Oak Ridge National
Laboratory to displacement dose levels in the range of 10−4 to 0.72 dpa,(Eldrup et al. 2002) and for
pure iron irradiated irradiated in the DR-3 reactor at RisøNational Laboratory at 320 K as shown
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in Figure ( 27. At initial stage (dpa < 10−4 dpa), the cluster density increases almost linearly with
damage dose. The increase in cluster density then slows down when the dose level is higher than
10−4 dpa. The cluster density approaches a saturated value and does not change much beyond a
dose level of 3.5 × 10−3.

Figure 26: Dose dependence of the total SIA cluster density in bcc Fe: -©-, no recombination; -2-
with recombination.

At the beginning of irradiation, cluster densities of both interstitials and vacancies are rather low,
and the chance that one interstitial cluster can get close enough to another interstitial or vacancy
cluster is rather small as well. Because of the 1-D motion of SIA clusters, the recombination cross
section with vacancy clusters produced in the cascade core as well as the agglomeration cross section
with other interstitial clusters are small. Theoretically, there are only two mechanisms by which
a SIA cluster could change its direction of motion: either thermal activation or interaction with
other defects or microstructure. The effect of thermal activation can be ruled out here because
our simulation is carried out at a low temperature (i.e. room temperature). At low damage dose
level, the large distance between clusters renders the interaction between them weak and can hardly
affect their migration, thus the density of clusters increases linearly with dose.

When the damage builds up to an appreciable level, on the order of 10−4 dpa, the simulation
box becomes crowded with defects. The probability of mutual interaction between clusters becomes
appreciable, leading to more pronounced recombination and agglomeration events. Consequently,
these ono-linear reactions slow down the increase in the density of SIA clusters. At higher accumu-
lated damage levels, on the order of 3.5× 10−3 dpa in the present case, the number of SIA clusters
that recombine or coalesce reaches dynamic equilibrium with the number of clusters produced by
fresh cascades. Then, SIA cluster density in the simulation box reaches a saturation level.

It is found that the presence of nano-voids has a significant effect on the evolution dynamics of
SIA clusters. As we can see in Figure ( 26, at a dose level lower than 5 × 10−4 dpa the difference
between SIA cluster densities, with and without nano-voids, is not large. However, when nano-
voids are included in the simulation, the surviving SIA cluster density deviates from the case when
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Figure 27: Dose dependence of the total visible SIA cluster density in bcc Fe: -©-, KMC simulation
results; -4- experimental results of Eldrup et al.;-5- experimental results of Singh et al.
(Eldrup et al. 2002, Singh et al. 1999)

nano-voids are not included. For example, the density of surviving SIA clusters is less by a factor
of 2 at 1.5 × 10−3 dpa, when nano-voids are included.

Although the density of SIA clusters reaches steady state after 3.5 × 10−3 dpa, SIA cluster
sizes continue to grow, and the density of “visible” clusters increases as well. In order to compare
the results from our simulations with experimentally measured cluster densities, it is necessary to
assume a minimum size that can be resolved in experiments. A value between 1.5 and 2 nm in
diameter is quoted in the literature as the minimum size resolved by TEM.(Singh and Zinkle 1993)
In the present simulations, we assume that SIA clusters containing more than 100 atoms are
“visible”. It is shown in Figure (26) that the density of “visible” SIA clusters obtained in the
simulations presented here is larger than the experimental measurement at high dose levels. The
high mobility of SIA clusters allows them to be absorbed on other sinks, such as grain boundaries
or free surfaces. In addition, impurities can play an important role in influencing the kinetics of
damage buildup, and hence we can consider the agreement with the experimental conditions on the
cluster density as qualitative rather than quantitative.

The size distribution of SIA clusters at a dose of 5.2 × 10−3 dpa is shown in Figure (28). More
than half of the total interstitial clusters consist of more than 30 defects, though small clusters
consisting of less than 10 SIAs still have the largest concentration. It can expected that the size
distribution will continue to shift to larger sizes as damage accumulates. It is found here that
mobile SIA cluster can be immobilized, either by getting trapped near a dislocation or by getting
locked with another large cluster (> 37 SIAs) of a different Burgers vector.

Characteristics of Decoration and Raft Formation

The dislocation decoration process builds up quickly with dose, and at 3×10−4 dpa, the grown-in
dislocation attracts a number of SIA clusters, and at higher doses, dislocation decoration becomes
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Figure 28: Size distribution of SIA clusters at a dose level of 5.21 × 10−3 dpa.

very significant, as can be seen in Figure (29). When an extremely mobile one-dimensionally
migrating interstitial cluster passes through the neighborhood of a pre-existing dislocation, it will
feel the influence of the strain field of the dislocation. As long as the defect-dislocation interaction is
attractive and the distance is small, the cluster cannot escape from the attractive zone by thermally-
activated random walk. Once a SIA cluster is trapped into the strain field of a dislocation, it will
rotate its Burgers vector to accommodate to the strain field of the dislocation and tend to migrate
along the direction of lowest energy barrier

It can be clearly seen in Figure (29-b) that the pure edge components of the slip dislocation
attract more SIA clusters in its vicinity. Trapped clusters can still serve as sinks for the glissile
clusters and increase their size before they rotate their Burgers vectors and finally get absorbed by
dislocations. With the accumulation of clusters along the dislocation line, a repulsive force field
is then gradually built up against further cluster trapping. Figure (30-a) shows contours of the
interaction energy between an interstitial defect cluster of Burgers vector a/2 < 1̄ 1 1 > and an edge
dislocation on the (1̄ 2̄ 1)-plane in bcc iron; and Figure (30-b) shows contours of the interaction
energy between an interstitial defect cluster of Burgers vector a/2 < 1̄ 1 1 > and a pre-existing
same-type cluster and an edge dislocation on the (1̄ 2̄ 1)-plane.

When the attractive stress field of the dislocation is fully compensated for by the existing
clusters, the SIA content in the primary trapping region achieves saturation and the decoration
process stops. Although dislocation decoration saturates at a low dose, the primary region of
cluster trapping shifts the stress field of the dislocation, and cluster trapping occurs only ahead
of the existing dislocation/loop structure, where the interaction remains attractive.(Trinkaus et
al. 1997) For increasing dose, cluster trapping continues away from the dislocation and results
in dislocation wall formation. As seen in Figure (25-d), our simulations have already shown the
extension of cluster trapping and the formation of dislocation wall.

In addition to dislocation decoration, another major striking feature of microstructure evolution
is the formation of dislocation loop rafts. Figure (31) shows a configuration of SIA cluster rafts
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Figure 29: Spatial distribution of SIA clusters in bcc Fe at 300 K, (a) 1.3×10−3 dpa, (b) 5.2×10−3.

Figure 30: (a) Local iso-energy contours for the interaction energy of a SIA cluster of Burgers vector
a/2 < 1̄ 1 1 > with an edge dislocation on the < 1̄ 2̄ 1 > -plane in bcc iron; (b) local iso-energy
contours of the interaction energy of an interstitial defect clusters of Burgers vector a/2 < 1̄ 1 1 >
with a pre-existing same type cluster and an edge dislocation on the < 1̄ 2̄ 1 > -plane. Contours
are plotted at 0.02 (in µδA/(1− ν), where µ is the shear modulus and δA is the surface area of the
SIA cluster) increment.
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Figure 31: A close-up view of the configuration of a raft of interstitial clusters formed at a dose
level of 1.8 × 10−3 dpa. The raft is enclosed in a dotted circle.

formed at a dose level of 1.8×10−3 dpa. The Burgers vectors of the clusters making up the raft are
all parallel to on other, which is in agreement with experimental observation.(Trinkaus et al. 1997)
When an interstitial cluster approaches another one, they are subject to the influence of the strain
field of each other. If the interaction between them is attractive and strong enough to overcome the
energy barrier for directional change, clusters adjust their relative positions and orientations. This
scenario is similar to the pinning of clusters, which has been demonstrated in the previous section.

To shed light on the nature of cluster-cluster self-trapping, we consider the forces between two
identical clusters. In Figure (32) a prismatic dislocation loop is fixed at the origin, and another
identical one is moved along its slip direction. The glide force on the moving loop is plotted as a
function of its relative position. It is shown that 5 equilibrium positions (zero force) exist between
the two parallel clusters. However, only three of them are stable, at a relative angle of ±30.5o or
±90o. When multiple clusters interact, this simple picture is somewhat disturbed. Nevertheless,
extended stable cluster complexes form by this self-trapping mechanism. Figure (33) shows the
force field along the slip direction of an existing raft obtained in our simulations. Two additional
clusters that will join the raft in the following time step are also shown in dotted lines. It can
be seen that raft formation is “autocatalytic”, since a raft nucleus is stable, but keeps expanding
through the association of other clusters on its periphery. As the number of clusters within a raft
increases, the mobility of the raft as a whole decreases. The decrease in the mobility of individual
clusters can be attributed to mutual elastic interactions between clusters that are members of a
raft.

Conditions for Decoration and Raft Formation

Trinkaus et al. (Trinkaus et al. 1997) have shown that a grown-in dislocation would have a
large drainage area for accumulating one-dimensionally migrating glissile loops in its neighbour-
hood. Our simulations also demonstrate that even at a fairly low dose of 1.3 × 10−3 dpa, a clear
dislocation decoration is observed. The energy barrier for directional change is a critical parame-
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Figure 32: The glide force between two prismatic dislocation loops with parallel Burgers vectors as
a function of their relative positions. The force is scaled by µb1b2A1A2/4π(1− ν), where bi and Ai

(i = 1, 2) are the Burgers vectors and surface areas of the two loops, respectively.

Figure 33: Force field distribution along the glide direction of an existing raft of SIA clusters (in
solid lines). Two new SIA clusters (in dashed line) which will join the raft are also shown.
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ter in controlling when, how and to what extent dislocation decoration and raft formation occur.
The maximum range for the elastic interaction that is strong enough to overcome the barrier and
thereby leads to a Burgers vector change is strongly dependent on this parameter. In other words,
the interaction between defects and the microstructures contributes to dislocation decoration and
the formation of rafts in terms of changing the diffusivity and the characteristics of mixed 1D/3D
migration. Brimhall and Mastel (Brimhall and Mastel 1970) proposed that loops move through
the lattice by a combination of prismatic glide and self-climb to form rafts. Our present simula-
tions, however, suggest that raft formation could be achieved just by prismatic glide and rotation
of glissile SIA clusters. A necessary condition for pronounced formation of rafts is that the group
of clusters within a raft is large enough to trap a single glissile cluster in the strain field formed
by the group and prevent it from further Burgers vector rotation. Our simulations indicate that
small rafts containing two or three clusters are still mobile; more specifically, these small patches
still perform 1-D migration, although at reduced mobility. With the size of a patch increasing, the
overall mobility decreases, and a raft consisting of more than five clusters is literally immobile. Due
to thermal activation or interaction with other defects, a SIA cluster trapped in the outer region
of a raft may break away and detrap from the raft.

The importance of glissile SIA clusters produced in displacement cascades has been demonstrated
to play a decisive role in the irradiation-induced microstructural evolution. The 1-D motion of
glissile SIA clusters and the interaction between defects and the dislocation microstructure were
shown to be the main cause for the appearance and development of decorations and rafts. At a
rather low dose around 1.0× 10−3 dpa, a large portion of the initially glissile clusters are shown to
be trapped around the slip dislocation loop ( the majority of them are distributed near the edge
component) and become nearly virtually immobile. The high concentration of SIA loops around
slip dislocations results in an extremely inhomogeneous spatial distribution. Our simulations show
a clear picture of how SIA clusters are attracted to dislocations to decorate and lock them in place.
It is suggested that raft formation could be achieved just by prismatic glide of glissile interstitial
clusters and rotation of their Burgers vectors under the influence of internal strain fields (e.g.
generated by dislocations).

5.4 DD Applications

5.4.1 Microstructure Evolution

The solution of the set of ordinary differential equations 215 describes the motion of an ensemble of
dislocation loops as an evolutionary dynamical system. However, additional protocols or algorithms
are used to treat: (1) strong dislocation interactions (e.g. junctions or tight dipoles), (2) disloca-
tion generation and annihilation, (3) adaptive meshing as dictated by large curvature variations
(Ghoniem et al. 2000).

The shape of individual loops within an ensemble is evolved using equations of motion for
generalized coordinates representing the position, tangent, and normal vectors of nodes on each
loop. Figure (34) shows the results of such computations for simulation of plastic deformation in
single crystal copper at a constant strain rate of 100 second−1. The initial dislocation density of
ρ = 2× 1013 m−2 has been divided into 300 complete loops. Each loop contains a random number
of initially straight glide and superjog segments. When a generated or expanding loop intersects
the simulation volume of 2.2 µm side length, the segments that lie outside the simulation boundary
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are periodically mapped inside the simulation volume to preserve translational strain invariance,
without loss of dislocation lines. The number of nodes on each loop starts at 5, and is then increased
adaptively proportional to the loop length, with a maximum number of 20 nodes per loop. The
total number of Degrees of Freedom (DOF) starts at 6000, and is increased to 24,000 by the end
of the calculation. However, the number of interacting DOF is determined by a nearest neighbor
criterion, within a distance of 400 a (where a is the lattice constant), and is based on a binary
tree search. The dislocation microstructure is shown in Figure 34 at different total strain (Wang,
Ghoniem, LeSar and Sriram 2003). It is observed that fine slip lines that nucleate at low strains
evolve into more pronounced slip bundles at higher strains. The slip bundles are well-separated in
space forming a regular pattern with a wavelength of approximately one micron. Conjugate slip
is also observed, leading to the formation of dislocation junction bundles and what appears to a
stabilization of a cellular structure.

Figure 34: Results of computer simulations for dislocation microstructure deformation in copper
deformed to increasing levels of strain (shown next to each microstructure
( After Wang et al. (2003))

5.4.2 Plasticity Mechanisms with Anisotropic DD

Dislocations will move under forces and are balanced by viscous dissipation. The variational form
of the governing equation of motion of a dislocation loop is given by Equation (211) ((Ghoniem
and Sun 1999a, Ghoniem et al. 2000, Huang and Ghoniem 2002b)). In this section, we incorporate
the present methodology of calculating dislocation interactions and self-forces with full anisotropic
elasticity theory into our PDD computational method (Ghoniem and Sun 1999a, Ghoniem et al.
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2000, Huang and Ghoniem 2002b)). We will focus first on the results of elementary dislocation
mechanisms in anisotropic cubic crystals, where the effects of anisotropy are conveniently evaluated
in terms of A. The results for three typical dislocation mechanisms, essential is DD simulations, are
evaluated next. These are Frank-Read (F-R) source expansion, dislocation dipoles and dislocation
junctions.

Figure (35) displays the evolution of an F-R source from an initial straight segment in an FCC
crystal with different anisotropic ratios A. The segment of an initial length 1000a is located on
the (111)-glide plane, and is pinned at its two ends. The Burgers vector is b= 1

2 [1̄01], and the
segment is along the [1̄10] direction. The segment is then subjected to a sudden uniaxial stress
σ11/µ = 0.2% (with µ = (C11 − C12)/2, and resolved shear stress τ/µ = 0.08%) along the [100]-
direction. Stresses are measured in units of µ = (C11 − C12)/2, and distances in units of the
lattice constant a. Other parameters are: C11/C12/µ = 5 : 3 : 1, and the dislocation mobility is
taken as M = 104 Pa−1 s−1. These units and parameters will be used throughout all following
simulations, unless stated otherwise. The effects of elastic anisotropy on the expansion of a typical
F-R source are shown in Figure (35). As the anisotropy ratio increases, greater resistance to shear
deformation is observed, as if the “effective”self-force becomes larger. Full calculation of the self-
force is computationally intensive, because of the need to perform numerical line integrals over the
entire loop. Hence, local approximations become desirable. The figure shows that the F-R source
expansion rate is sensitive to the method of self-force approximation, and that full calculations are
required if one needs higher accuracy. The spatial position of the F-R source is shown for three
cases: (1) full calculation of the self-force as outlined above, (2) calculations with the line tension
approximation for the self force, and (3) calculations with only the local term in the self force. The
effects of the method of self-force calculation is especially evident when the F-R source expansion is
unstable (see Figure (35-b)), because the instability threshold stress is sensitive to the magnitude
of the self-force.

Next, we consider the dynamic process of dislocation dipole formation in FCC crystals. Fig-
ure (36-a) shows the configurations (2-D projected on the (111)-plane) of two pinned dislocation
segments, lying on parallel (111)-planes. The two dislocation segments are initially straight, par-
allel, and along [1̄10], but of opposite line directions, have the same Burgers vector b= 1

2 [1̄01],

and are pinned at both ends. Their glide planes are separated by h. In this figure, h = 25
√

3a,
L : d : h = 800 : 300 : 25

√
3, with L and d being the length of the initial dislocation segments

and the horizontal distance between them, respectively. Without the application of any external
loading, the two lines attract one another, and form an equilibrium state of a finite-size dipole. It
is interesting to note that while the dynamic shape of the segments during the dipole formation is
dependent on the anisotropy ratio A, the final configuration appears to be insensitive to A. Under
external loading, the dipole may be unzipped, if applied forces overcome binding forces between
dipole arms. The forces (resolved shear stresses τ , divided by µ = (C11 − C12)/2) to break up the
dipoles are shown in Figure (36-b). It can be seen that the break up stress is inversely proportional
to the separation distance h, consistent with the results of infinite-size dipoles. It is easier to break
up dipoles in crystals with smaller A-ratios (e.g. some BCC crystals). It is also noted that two ways
to break up dipoles are possible: in backward direction (where the self-force assists the breakup),
or forward direction (where the self-force opposes the breakup). For a finite length dipole, the
backward break up is obviously easier than the forward one, due to the effects of self forces induced
by the two curved dipole arms, as can be seen in Figure (36-b).

When two dislocations approach each other, their interaction can be very strong leading to
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Figure 35: Evolution of an F-R source under applied stress σ11/µ = 0.2% (resolved shear stress
τ/µ = 0.08% , with τ = 0.5(C11 − C12)), for anisotropy ratio (a) A = 2 and (b) A = 0.5
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Figure 36: Evolution of dislocation dipoles without applied loading (a) and dipole break up shear
stress (b)
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significant reconfiguration. They may attract each other to form a stable common part (junction),
or repel one another. In Figure (37), we show the configurations of attractive junctions in FCC
crystals of different anisotropy ratios. Two initially straight dislocation segments, with Burgers
vectors and slip planes given by 1

2 [011̄](111) and 1
2 [101](111̄), respectively, are pinned at their ends.

They are allowed to move and approach each other, until they lock in an equilibrium state. The
two dislocations attract each other to form a common junction along the intersection direction of
the two glide planes [1̄10]. Each of the initial dislocations has a length of 500

√
5 and makes an

angle θ = 26.6o with [1̄10]. Without the external loading, the junction configuration in crystals
with different anisotropy ratio A are quite similar. The strong binding forces appear to overcome
differences in their self-forces, and thus the configuration is not sensitive to A. With an increase in
external loading, the junction length decreases, until the junction is unzipped at a critical stress.
The junction strength is found to depend on the anisotropy ratio. From the figure, it can be
seen that under external loading, the junction length decreases faster for smaller A. Dislocation
junctions of the type studied here are thus weaker (or stronger) in anisotropic crystals of lower (or
higher) values of A.
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Figure 37: Evolution of dislocation junctions under applied loading σ11/µ = 0.24% (τ/µ = 0.056%)

5.4.3 Approximations with Effective Moduli

Although the PDD has been extended in this work to crystals of arbitrary elastic anisotropy, in
practice however, the computational requirements can be taxing, especially in large-scale com-
puter simulations. For that purpose, it may be advantageous to perform computer simulations
with isotropic PDD, provided that the results of such simulations would closely match the more
computationally intensive anisotropic PDD. In this section, we investigate three different averag-
ing methods that have been proposed to extract “equivalent”isotropic elastic constants from the
full anisotropic values. Two such methods: the Voigt (V) and Reuss (R) averaging procedures
are common in general elastic deformation problems, while the third one: the Scattergood-Bacon
(S-B) procedure has been specially used in the context of determining equilibrium shear loop con-
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figurations (Scattergood and Bacon 1974). We will examine here the extent of agreement between
isotropic PDD with the anisotropic counterpart APDD, when these three approximations are used.

In the Voigt scheme, the averaging is performed over the elastic constant tensor Cijkl, while in
the Reuss scheme, it is done over elastic compliances Sijkl. Results of such averaging and relevant
parameters for some anisotropic crystals are listed in (Hirth and Lothe 1982). All calculations
reported in this section are for the case of single crystal copper (A = 3.21). The calculated elastic
constants are given in Table (4) below.

Averaging Method µ (GPa) ν

Voigt(V) 54.6 0.324

Reuss(R) 40.0 0.369

Scattergood & Bacon(S-B) 42.1 0.431

Table 4: Elastic constants of single crystal Cu (C11 = 168.4, C12 = 121.4 and C44 = 75.4 GPa)

First, we give a simple example, to determine how well the static stress field of dislocations
in anisotropic crystals can be approximated by effective isotropic elasticity. Calculations of the
stress field along the symmetry axes of a circular shear dislocation loop show that the shear stress
component σzx can be well approximated (especially by the S-B scheme) along the coordinate
axes. However, as a result of anisotropy, a distortion stress component σxy exists even along the
geometric symmetric axes, and which cannot be produced by any isotropic approximation. Thus,
the full components of the stress field tensor induced by dislocations in anisotropic crystals cannot
be replaced by isotropic approximations. However, the influence of such difference on interaction
and self-forces, and on microstructure evolution need to be investigated.
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Figure 38: Evolution of F-R source in anisotropic elasticity, compared with isotropic approximations
under stress σ11 = 120 MPa

To study the effects of averaging the anisotropic elastic moduli in PDD simulations, we will
compare here the results of full anisotropic calculations with their corresponding isotropic approx-
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imations. This will be accomplished by focusing on three typical dislocation mechanisms: F-R
source expansion, dipole dynamics, and junction formation.

Figure (38) shows the results of DD simulations of an F-R source on the 1
2 [1̄01](111) slip system.

For stable F-R configurations below a critical bow out stress, or at short evolution times, the
isotropic approximations of Reuss and S-B are quite suitable. For stress levels greater than the
critical bow out stress, and at long time intervals, great differences exist between the approximation
and the full anisotropic calculations. For the special case of the F-R source, it is found that the
S-B approximation is the most suitable, followed by the Reuss averaging schemes. Figure (39)
shows the simulation results for the process of dipole formation. The results indicate that none of
the isotropic approximations produce similar dipole configurations to the anisotropic case. While
the middle section of the finite size dipole is perfectly straight in the isotropic case, the lateral
separation between the dipole arms is not constant in the anisotropic case. This is a consequence
of the stronger dependence of the self-force on the angle between the Burgers and tangent vectors
in the anisotropic case.
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Figure 39: Dislocation dipole in anisotropic elasticity, compared with isotropic approximations,
under the stress σ11 = 45 MPa

Generally, all these typical dislocation mechanisms can be captured and simulated qualitatively
by isotropic approximations. The errors are on the order about 20% or less, and the Scattergood-
Bacon or Reuss approximations to the elastic moduli are preferable. However, for more accurate
studies of dislocation mechanisms (e.g. in thin films), or for studies of critical stress levels to bow
out a segment or unzip dipoles/junctions, care must be exercised in using isotropic approximations.

5.4.4 Strain Hardening in Cu

In contrast with our PDD computer code using isotropic elastic theory, APDD simulations are
computationally massive. The main reason is that the evaluation of the elastic field and self-forces
requires additional numerical integrations, with a corresponding large number of calculations of the
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derivatives of Green’s functions. To reduce the computational cost, a storage and look-up table tech-
nique can be used. We calculate the functions Gij ,k (r)/r2, which only depend on the unit direction
vector r/r at tabulated data points (usually represented in spherical coordinates). We then store
the results of these calculations in a look-up table. Values of these functions at desired directions
are obtained by interpolation. This technique results in higher demands on memory allocations,
but is generally advantageous for massive DD simulation. When computing and storing these func-
tions, we also take advantage of the symmetry properties: Gij ,k (r) = Gji,k (r) = −Gij ,k (−r).
This symmetry reduces the number of Green’s derivative components from 27 to 18. The functions
Gij ,k (r)/r2 were first evaluated at points on a half unit sphere, represented by the two angles
0 ≤ θ ≤ π/2 and 0 ≤ φ ≤ 2π. Values at intervals ∆θ = ∆φ = h have been calculated and stored,
and a linear interpolation scheme was then used to determine other function values. We chose
h = π/500, resulting in storage requirements for 4.5 million function evaluations.

To study the effects of elastic anisotropy on strain hardening and the corresponding dislocation
microstructure evolution, the deformation of a Cu cube of side 0.75 µm and containing an initial
dislocation density of 5 × 1013 m−2 is simulated. An initial random distribution of 40 dislocation
loops was generated on different slip planes. Periodic boundary conditions were applied to loops
that expand beyond the simulation volume boundary such that segments which leave one of the
surfaces are mapped back periodically on corresponding entry points on opposite surfaces. In these
calculations, we simulate a uniaxial tensile test of the cube at a constant strain rate 103 s−1, with
the load applied along [100] direction.
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Figure 40: Stress-Strain curves for single copper crystals

The corresponding simulated stress-strain curve is shown in Figure (40), where calculations with
full elastic anisotropy are compared with the Voight and S-B approximations. It is clear that both
approximations are not capable of reproducing the stress-strain curve for anisotropic single crystals.
A major difference is attributed to the elastic response at very low strains as a result of differences
in the “effective Young’s modulus”. If this difference is accounted for, one can see that the strain
hardening behavior that results from dislocation microstructure is reproduced somewhat better by
the S-B approximation. These observations are derived from simulations to low strain values, while
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simulations at high strain or different microstructure may reveal other features.

5.4.5 Nano-layered Materials

A variational form of the governing equation of motion for a dislocation loop Γ has been developed
for over-damped dislocation dynamics, where the work exerted on dislocation loop expansion is
balanced by viscous dissipation (Ghoniem et al. 2000), i.e.

∫
Γ(F t

k − BαkVα)δrk|ds| = 0. Here, F t
k

is the total Peach-Koehler force induced by applied external forces, internal stress fields (such as
dislocation interactions, interface image forces, and the self-force), Bαk is the resistance (inverse
mobility) matrix, Vα is the velocity, rk is the displacement of the dislocation line, and ds the
dislocation line vector. Because the present formulation results in a line integral form of the force
vector distribution, it can be readily incorporated into the PDD framework (Ghoniem et al. 2000).
In this section, we present computer simulation results for dislocation motion in nano-layered
materials using the PDD methodology.

It has been experimentally established that the hardness (or strength) of multi-layer thin films is
much higher than corresponding bulk materials. It is also shown by numerous experiments that the
strength and hardness of the film increase as the thickness of constituent layers decreases (Shinn,
Hultman and Barnett 1992, Misra, Verdier, Lu, Kung, Mitchell, Nastasi and Embury 1998, Clemens,
Kung and Barnett 1999). Several underlying mechanisms have been proposed in recent years,
although relying on approximate treatments of dislocation fields in such systems. The objective
here is to apply the present rigorous elasticity solutions for 3-D dislocation loops in anisotropic,
multi-layer thin films to develop an understanding of plasticity and strength at the nano- to the
micro-scale.

Experimental results and isotropic elasticity estimates show that the dominant mechanism that
controls the strength and hardness of multi-layer thin films is the influence of the dislocation image
force associated with a mismatch in elastic properties between adjacent film layers (Clemens et
al. 1999). For layered materials with a large mismatch in elastic properties, a significant hardness
enhancement was observed. On the other hand, for layered materials with small differences in their
elastic properties, no measurable hardness enhancement was detected (Shinn et al. 1992, Clemens
et al. 1999). Experiments on an Fe/Pt layered system (Daniels, Nix and Clemens 1995a, Daniels,
Nix and Clemens 1995b) indicated that when the bilayer thickness ranges from few to tens of nano-
meters, the hardness of this bilayer metal system exhibits a plateau. Over this bilayer period range,
the interface structure, misfit dislocation density and coherency strains all change rapidly, so they
are not likely to be the dominant mechanism. Hence, the mismatch in elastic moduli was concluded
to be the most likely dominant factor determining hardness enhancements in these layered materials
(Daniels et al. 1995a, Daniels et al. 1995b).

Two models are often used to explain the observed behavior of hardness (or flow stress) in thin
films. In the threading dislocation model (Freund 1990, Nix 1998), the flow stress is determined by
the energy balance between the threading glide dislocation segment and the misfit dislocation left
behind at the interface. This model results in a flow stress that scales approximately with the inverse
of the film/layer thickness. For a thin film/layer of thickness h, subjected to a uniform applied
biaxial stress σa, the critical stress (σth

c ) for threading dislocation motion is given by (Freund 1990)

σth
c ≈ µb

4π(1 − ν)h
[(4 − ν) ln(h/r0) − 1] (280)
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for an isotropic material with a shear modulus µ, Poisson’s ration ν, and a dislocation core cut-off
radius r0 ≈ b. In this model, interfaces are introduced as impenetrable planes for dislocations.

The second model is an extension of the well-known Hall-Petch effect. Here, dislocations are
assumed to form a pile-up at a boundary until a critical stress is reached. This results in a flow
stress which is inversely proportional to the square root of the layer thickness or grain size. Both
models qualitatively explain the increase in the flow stress with decreasing film/layer thickness, but
not the behavior as the layer thickness decreases below tens of nano-meters.

In the present work, we focus on simulation of dislocation motion in relatively thin layers, when
the individual layer thickness is in the range of few nanometers to hundreds of nanometers. This
is typically much smaller than the characteristic length scale of grains occupied by dislocation
networks in bulk materials. Therefore, the number of dislocations needed in order to study thin
layer plasticity is small. In many cases, plasticity and strength can be described through the
behavior of a single dislocation loop.

Consider a Cu thin layer (thickness h), sandwiched between two semi-infinite harder Ni sub-
strates. The dislocation is originally located within the thin layer. Cu and Ni are both fcc crystals
with [001] out-of-plane orientations and < 110 > {111} slip systems, and anisotropic elastic con-
stants (Hirth and Lothe 1982). In Cu, b = 0.361 nm, and the dislocation mobility is taken to be
isotropic (M = 104 Pa−1 s−1). The system is subjected to a uniform applied biaxial stress σa. We
will ignore here the stress due to lattice mismatch. We only consider the image force effect due to
the modulus difference at the Cu-Ni interface. The value of image force increases as the dislocation
segment approaches the interface, and is singular exactly at the interface. This is a consequence
of the assumptions of linear elasticity, which has been successfully used in dislocation dynamics
simulations including similar singular behavior of the dislocation self-force, energy and junction
formation. If a cut-off radius is introduced for the dislocation, the results of infinitesimal linear
elasticity for self-force, energy, and junction formation are in good agreement with more detailed
atomistic simulations (Rodney and Phillips 1999). We assume also here that dislocations do not
dissociate into partials, and take the cut-off radius to be r0 ≈ b (Freund 1990, Nix 1998). Detailed
atomistic simulations are required to ascertain the value of the cut-off distance. In the following
simulations, we assume that there is one Frank-Read (F-R) source inside one of the layers, and
that the source dislocation is initially straight and pinned from both ends.

Confined Layer Slip (CLS)

Figure (41) shows the propagation mode of a source dislocation in a Cu layer of thickness 144 nm
at different loading levels. We choose the length L of the original dislocation to be longer than the
layer thickness, h, i.e. L=4h. Under a small applied stress below a critical value (approximately
estimated by Freund’s formula, Equation (280)), the dislocation will bow out in the Cu layer
towards the interface. As a result of the image force exerted by the harder Ni layer, the dislocation
is repelled away from the interface and reaches an equilibrium configuration. If the applied stress is
larger than the critical value, the dislocation first bows out towards the interface then it is blocked
by the image force and is confined to propagate within the layer. The critical stress for the onset
of confined layer slip is first estimated according to Equation (280) with equivalent isotropic values
of µ and ν. This value is then refined by increasing (or decreasing) the applied stress until the
dislocation cannot achieve its equilibrium configuration any more.

The influence of the dislocation source size is also considered. Below the critical stress for
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Figure 41: Dislocation motion in a thin layer with h=144 nm under different applied biaxial stress
levels (a) σa = 210 MPa < σth

c = 250 MPa, and (b) σa = 280 MPa > σth
c = 250 MPa. Each line

corresponds to a time increment of 0.1 ns.
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Figure 42: Dislocation motion in a thin layer with h=10.8 nm under an applied stress σa =
1.2 GPa > σth

c = 1 GPa. Each line corresponds to a time increment of 2 ps.

threading dislocation motionσth
c , dislocations cannot propagate in the layer. When the initial

source size is approximately longer than the layer thickness, the dislocation bows out and reaches
an equilibrium configuration. If the initial source size is smaller than the layer thickness, slip
propagation is controlled by the Orowan mechanism, and the critical stress for bowing out can be
estimated as: (Foreman 1967) σO

c ≈ µb
2πL

√
6 ln(L/r0).

In comparing the critical stresses for a threading dislocation motion within a layer, σth
c , with

that for the activation of an F-R source by the Orowan mechanism, σO
c , the two values are close

when the layer thickness, h, is on the order of the initial F-R source length, L. In any thin layer,
many F-R sources may exist with different sizes, locations and orientations. If the applied stress
is smaller than the critical stress for threading dislocation motion, σ < σth

c , some dislocations will
expend towards the interface, but none would be able to propagate within the layer. Once the
applied stress is removed, F-R source dislocations will re-tract to their original length. This type of
dislocation motion does not lead to permanent deformation of the thin film. We term this regime
as quasi-elastic. When the applied stress reaches the critical value σth

c , longer dislocations with
L>h will expand, but will still be confined within the layer. This regime of behavior is the so-
called Confined Layer Slip (CLS)(Anderson and Li 2001). Finally, if the applied stress is increased
further, σ > σO

c > σth
c , shorter dislocations L<h are gradually activated, first bowing out from

stable shapes, then reach the interface, and finally propagate within the layer. Thus, dislocations
emitted from longer F-R sources with L>h are controlled by the threading dislocation mechanism,
while shorter ones by the Orowan mechanism.

Loss of Slip Confinement

As individual layers become very thin (i.e. in the tens of nanometers), only single dislocations
can propagate and expand upon the application of an externally applied stress. However, because
the layer thickness is very small, the curvature of the dislocation loop in segments subtended
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Figure 43: Yield strength of a Ni-Cu layered thin film as a function of the layer thickness. Solid
line: Freund’s formula, triangles: experimental results , and circles: current simulation results.

(Freund 1990, Misra et al. 1998)

between layers would be extremely high, and thus self-forces in these regions are very substantial.
The externally applied stress would have to overcome such large self-forces if these curved segments
are to expand. The applied P-K force on those segments that are parallel to the interface does not
have to overcome self-forces because the curvature of these segments is small. Rather, the image
force from neighboring and other interfaces would have to be overcome by the applied P-K force.
Since we regularized the solution by selecting a cut-off radius of one Burgers vector on either side
of the interface, the dislocation will be repelled with a maximum image force on one side of the
interface, and then attracted with a different maximum force once it crosses the interface. If the
applied stress is high enough that the maximum P-K force on the straight dislocation segments
close to the interface overcomes both repulsive and attractive forces, the dislocation will cross from
one layer to the neighboring one, and CLS is finally lost. This mode of deformation is shown in
Figure (42), where successive dislocation positions at 10 ns time intervals are shown for an F-R
source dislocation, initially with a straight segment pinned at both ends, and is subjected to a
suddenly applied bi-axial stress of magnitude 1.2 GPa. The dislocation, which lies on the (111)-slip
plane, has an initial length of 43.2 nm, and its Burgers vector is a

2 < 1̄01 >. After 15 ps, the leading
edge of the bowed out dislocation reaches the interface. Since the applied P-K force is larger than
both the attractive and repulsive components of the image force, the dislocation loses confinement
within the copper layer and expands into the neighboring nickel layer.

Figure (43) shows results of our calculations for the maximum strength of a copper layer in a
thin film of alternating Cu/Ni layers based on the activation of a single F-R source, as a function
of the layer period. Experimental results for nano-indentation by Misra et al. (Misra et al. 1998)
and Clemens et al. (Clemens et al. 1999) are also shown. Since Freund’s formula is often used to
estimate the strength of thin films, film strength using Equation (280) is also shown as a solid line
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on the same figure for comparison. For layers of thickness less than approximately 100 nm, a single
F-R source will determine the overall strength of the layer as a competition between confinement
in the layer by image forces generated by elastic modulus mismatch, and resistance to deformation
by self-forces on the curved ends of the dislocation loop. If the modulus mismatch is not too great,
dislocation loops will cross from layer to layer rather than be confined within a layer. One would
expect that the maximum strength is determined by the layer thickness and the ratio of elastic
modulii as well. For thicker layers, F-R sources can operate many times leading to dislocation
multiplication and the formation of a pile-up. In such case, the dominant deformation mode is the
Hall-Petch mechanism.
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Figure 44: Plastic deformation mechanism and strength map for thin layered films.

Based on the present simulations, a strength-thickness map for Cu/Ni multi-layer materials
is shown in Figure (44). Four regions representing different deformation mechanisms are shown,
consistent with earlier investigations (see (Anderson, Foecke and Hazzledine 1999, Misra, Verdier,
Kung, Embury and Hirth 1999) ). These are:

1. Region I - The applied P-K force is smaller than both the Koehler barrier and the self-
force. Dislocation loops deform to an equilibrium shape, and regain their original shape upon
removal of the applied stress. This is a quasi-elastic deformation mode;

2. Region II - The applied P-K force is larger than the Koehler barrier. Dislocation loops are
no longer confined in this region, and plastic instability is manifest in loss of confinement;

3. Region III - The applied P-K force is less than the Koehler barrier but still greater than the
maximum self-force anywhere on the loop. Loops are forced to propagate within one layer in
this Confined layer Slip (CLS) mode of deformation;

4. Region IV - The layer thickness is so large that it can support several emitted dislocations
from F-R sources within the layer, but the applied P-K force is such that the leading dislo-
cation in the pile-up cannot overcome the Koehler barrier. This is the classical Hall-Petch
mode of plastic deformation.
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The development of a line integral form for the elastic field of dislocations in anisotropic, multi-
layered materials has enabled an extension of the PDD method to the simulations of plasticity
and strength in these material systems. Earlier efforts in this area rely on surface integrals for
the derivatives of Green’s functions, which complicates numerical implementation in DD computer
simulation programs. The following conclusions can be drawn from applications of the developed
method to a number of material deformation problems at the nano-scale to the micro-scale:

1. The influence of free surfaces or interfaces on dislocation motion through image forces extends
into the material to several hundred lattice constants. Thus, for computer simulations of large
material volumes (e.g. tens of microns), image forces can be neglected until the dislocation
is within a few hundred lattice constants. Numerical resolution of any method (including the
Finite Element) must be sufficient close the surface.

2. In thin anisotropic films containing many layers of small thickness (i.e. in the tens to hundreds
of nm), interaction between several interfaces contributes to the image force on dislocations.
No simple geometric image construction can be found to yield accurate magnitude and direc-
tion of interface image forces.

3. To retain the original idea of the dislocation self-force in an infinite medium, the elastic field
is separated into two components: one that yields the self-force in an infinite medium, while
the second is due to the effect of interfaces (i.e. the image force).

4. In thin Al films on Cu substrates, it is shown that a small layer of aluminum oxide can
reverse the surface image force from attractive to repulsive. Also, the interaction between
the Al/Al2O3 interface and the Al/Cu interface can result in near zero image force on curved
dislocation segments in the middle of the film. If the oxide film thickness is greater than
the film thickness itself, its image force can be approximated by the semi-infinite half-space
results.

5. Plastic deformation of very thin layers in the tens of nm thickness range is controlled by
a competition between the resistance of curved segments due to high self-forces, and the
maximum force to transmit nearly straight segments across the interface (i.e. the Kohler
barrier). If the layer is too thin, this results in high curvatures and resistance to CLS.
Depending on the ratio of the elastic modulii of adjacent layers, dislocations may find an
easier path to move into adjacent layers, and thus CLS is lost. On the other hand, if the
ratio of elastic modulii between adjacent layers is sufficiently high and the layer thickness is
sufficiently large, dislocations are forced to be confined within one layer.

6. Strength calculations from the present model show reasonable agreement with experimental
nano-indentation data on Cu/Ni nano-layered materials. Strength saturation below layer
thicknesses of ∼ 20 nm is a result of the near independence of the Koehler barrier strength on
layer thickness. The present model is incapable of explaining the decrease in layer strength
below ∼ 10 nm, as shown in the experimental data. This limitation may be attributed to
atomistic dislocation core effects not included in the model.

7. Four general deformation mechanisms are identified for layered thin films: quasi-elastic, plas-
tic instability, Confined Layer Slip, and the Hall-Petch regime, consistent with recent litera-
ture (Anderson et al. 1999, Misra et al. 1999).
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