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Abstract

Consider a k-element subset P of the plane. It is known that the maximum number of sets
similar to P that can be found among n points in the plane is Θ(n2) if and only if the cross
ratio of any quadruplet of points in P is algebraic [3], [9].
In this paper we study the structure of the extremal n-sets A which have cn2 similar copies

of P . As our main result we prove the existence of large lattice-like structures in such sets A.
In particular we prove that, for n large enough, A must contain m points in a line forming an
arithmetic progression, or m × m lattices, when P is not cocyclic or collinear. On the other
hand we show that for cocyclic or collinear sets P , there are n-element sets A with cPn2 copies
of P and without k × k lattice subsets.

1 Introduction

We identify the plane with the field of complex numbers C. For A,B ⊆ C and z,w ∈ C we denote
zA = {za : a ∈ A}, and A+ w = {a+ w : a ∈ A}. Also, we say that A and B are similar, and we
write A ∼ B, if there are complex numbers w and z 6= 0 such that B = zA+ w.

For every pattern set P and finite set A ⊂ C we define
SP (A) = |{X ⊆ A : X ∼ P}| .

It is a natural question, posed many times by Erdős and Purdy [4]-[6], to determine or estimate
the following function

SP (n) = max
|A|=n

SP (A); (1)

i.e., the maximum number of subsets similar to a given pattern P that can be found among n points
in the plane. In [3] Erdős and the second author started the study of this function. They noticed
that SP (n) ≤ n(n − 1) (a set similar to P is determined by the location of any pair of reference
points). They also proved that SP (n) ≥ cn2−b log−a n for some constants a, b, c > 0 depending only
on P , and SP (n) = Θ(n2) when P is an algebraic set or |P | = 3. Later, Laczkovich and Ruzsa
[9] proved that SP (n) = Θ(n2) if and only if the cross ratio among every quadruplet of distinct
elements in P is algebraic. Recall that the cross ratio of a quadruplet (a, b, c, d) of different complex
numbers is given by

(a; b; c; d) =
(c− a)(d− b)
(d− a)(c− b) .

Even though this settles the order of magnitude for a big class of sets P , it is not known if
limn→∞ SP (n)/n2 exists for any non-trivial sets P , e.g., triangles.
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In this article we take a qualitative approach to the problem. For a pattern set P satisfying
SP (n) = Θ(n

2), we say that A is a (P, c)-rich set if SP (A) ≥ c |A|2. Our objective is to find
structural properties about (P, c)-rich sets. To accomplish this, we introduce in Section 2 the
notion of a GP (m) set. Then we state our main result, Theorem 1, which asserts that every
sufficiently large (P, c)-rich set must contain a GP (m) set. The importance of this result is seen
through its corollaries. We prove, for example, the existence of large arithmetic progressions or
lattice structures (when P is not cocyclic or collinear) among (P, c)-rich sets. Other corollaries
include the fact that the related function SgenP (n), where the maximum in (1) is restricted to sets
in general position, satisfies SgenP (n) = o(n2); and the existence of regular triangle lattices among
sufficiently large extremal sets of the function ST (n), where T is an equilateral triangle.

For the sake of continuity, we postpone the proof of Theorem 1 to Section 4, where we intro-
duce the reader to some necessary Number Theory results by Freiman [7], Balog, Szemerédi [2],
Laczkovich, Ruzsa [9], and Fürstenberg, Katznelson [8].

Finally, in Section 3, we look closely to the case when P is a cocyclic or a collinear set. For
this case we construct (P, c)-rich sets contained in at most |P | lines. From this construction we
characterize cocyclic or collinear sets as the only sets P for which there are arbitrarily large (P, c)-
rich sets avoiding |P | × |P |-lattice structures.

2 P -generated sets and the main result

We start this section by introducing the concept of a GP (m) set which will be essential for our
main result. From now on P = {p1, p2, . . . pk} will be the pattern set, and for every positive integer
m, Im = {j ∈ Z : |j| ≤ m} and [m] = {j ∈ Z : 1 ≤ j ≤ m}.

We say that A is a P -generated set of parameter m, for short GP (m) set, if for some triplet
of points in P , say p1, p2, p3, there exist complex numbers u, v, and z 6= 0 such that A =

Sk
j=1 Lj

where
Lj =

p1 − pj
p1 − p3 (u+ zIm) +

p2 − pj
p2 − p3 (v + zIm).

A GP (m) set has the property that whenever we ‘place’ a similar copy of P in such a way that
p1 ∈ L1 and p2 ∈ L2, then pj ∈ Lj for all j ≥ 3 (hence the term ‘generated’). We make this precise
in the following proposition.

Proposition 1 For α,β ∈ Im and 1 ≤ j ≤ k let

aj,α,β =
p1 − pj
p1 − p3 (u+ zα) +

p2 − pj
p2 − p3 (v + zβ) ∈ Lj.

If a1,α,β 6= a2,α,β the set {a1,α,β, a2,α,β, a3,α,β, . . . , ak,α,β} is similar to P .

Proof. For fixed α and β we have

aj,α,β =
p1

p1 − p3 (u+ zα) +
p2

p2 − p3 (v + zβ) +
µ
u+ zα

p3 − p1 +
v + zβ

p3 − p2

¶
pj = uα,β + zα,βpj

where uα,β and zα,β do not depend on j and zα,β 6= 0 since, by assumption a1,α,β 6= a2,α,β.

By definition L1, L2 and L3 are arithmetic progressions of lengths 2m+ 1, 2m+ 1 and 4m+ 1
respectively. On the other hand, for j ≥ 4 the set Lj is generated by p1−pj

p1−p3 z and
p2−pj
p2−p3 z. It turns

out that these vectors are parallel if and only if {p1, p2, p3, pj} lie on a circle or a line. Hence

2



Lj is entirely contained in a line whenever p1, p2, p3, and pj are cocyclic or collinear, and it is a
(2m+ 1)× (2m+ 1) lattice otherwise.

If P is a triangle and A is a GP (m) set corresponding to the values u = v = 0 and z = 1,
then by the above proposition we have SP (A) ≥ (2m+ 1)2 − 1. Also, by our previous remark,
n = |A| = 8m+ 1. Thus A is an n-element set with at least n2/16 triplets similar to P . This is a
minor improvement over the n2/18 construction given in [3]; which can in fact be seen as a proper
subset of A.

The following theorem is the main result of the paper. It describes the structure of sets in
the plane with a large number of subsets similar to P by showing the existence of large GP (m)
subsets. The proof of the theorem will be postponed to Section 4. Before that, we will explore
some interesting geometric consequences.

Theorem 1 For every c > 0 and m positive integer there is a threshold N0 = N0(c,m) with the
following property.

Every (P, c)-rich set with n > N0 elements must contain a GP (m) set.

Proof. See Section 4.

Corollary 1 If S0P (n,m) denotes the maximum number of subsets similar to P , among all n-
element subsets of the plane with no m points on a line, then for every fixed m we have S0P (n,m) =
o(n2).

Proof. Follows directly from Theorem 1 and the fact that any GP (m) set has m collinear
points.

As a further corollary we also have SgenP (n) = o(n2), where this last function is the maximum
number of subsets similar to P among n-sets in general position (no 3 on a line no 4 on a circle).
The next corollary states the existence of large lattices among (P, c)-rich sets when P is not cocyclic
or collinear.

Corollary 2 If P is a finite set and {p1, p2, p3, p4} ⊆ P is not a cocyclic or a collinear set then for
every c > 0 and m positive integer there is a threshold N0 = N0(c,m) with the following property.

Every (P, c)-rich set with n > N0 elements must contain a (2m + 1) × (2m + 1) lattice with
generators x and y satisfying x/y = (p1; p2; p3; p4).

Proof. Assume without loss of generality that p1 = 0 and p2 = 1. Suppose Q is a (P, c)-rich
set with |Q| = n > N0, where N0 is given by Theorem 1. Hence Q must contain a GP (m) set, so
in particular Q contains the set

L4 =
p4
p3
(u+ zIm) +

1− p4
1− p3 (v + zIm)

=

µ
p4
p3
u+

1− p4
1− p3 v

¶
+
p4
p3
zIm +

1− p4
1− p3 zIm.

Let x = 1−p4
1−p3 z, y =

p4
p3
z. Notice that x/y = (0; 1; p3; p4) and since {p1, p2, p3, p4} is not a cocyclic set

then (0; 1; p3; p4) /∈ R, and consequently x and y are linearly independent. Thus L4 is the required
lattice.

There are n-sets with cn2 triples determining equilateral triangles, and containing no 3 × 3
lattices (e.g. any GP (m) set with n points and P an equilateral triangle). But large lattices are
unavoidable whenever c > 1/6, more precisely we have the following.
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Corollary 3 Let T be an equilateral triangle. For m positive integer and ε > 0 there is a threshold
N1 = N1(ε,m) with the following property.

Every set A with n > N1 elements for which ST (A) ≥
¡
1
6 + ε

¢
n2 must contain a (2m + 1) ×

(2m+ 1) regular triangle lattice.

Proof. Let T be the triangle {0, 1, eiπ/3} and R the rhomb {0, 1, eiπ/3, e−iπ/3}. Suppose A is
an n-element set satisfying ST (A) ≥

¡
1
6 + ε

¢
n2. For i = 1, 2 define Xi as the number of pairs in A

that are the vertices of exactly i equilateral triangles with vertices in A. Observe that according to
our definitions ST (A) = 1

3X1 +
2
3X2 and SR(A) = X2, hence

X1 + 2X2 ≥
µ
1

2
+ 3ε

¶
n2

and using the trivial inequality X1 +X2 < (1/2)n2 we conclude that

SR (A) = X2 > 3εn
2.

Hence by Corollary 2, for n > N1 = N0(3ε,m) we have that A contains a (2m + 1) × (2m + 1)
lattice with generators x and y satisfying x/y = (0; 1; eiπ/3; e−iπ/3) = −eiπ/3, so the lattice is in
fact a regular triangle lattice.

As a further corollary we can remark that in [1] it was proved that ST (n) ≥
³
1
3 −

√
3

4π

´
n2 +

O(n3/2), so the extremal sets for the function ST (n) contain large regular lattices.
When the set P is cocyclic Theorem 1 cannot guarantee a lattice substructure, but in that case

we can always obtain a set of k concurrent lines with many points.

Corollary 4 A set of arithmetic progressions in C is said to be concurrent if the lines containing
the progressions are concurrent. If P is a cocyclic set with k elements then for every c > 0 and m
positive integer there is a threshold N0 = N0(c,m) with the following property.

Every (P, c)-rich set with n > N0 elements must contain a set of k concurrent arithmetic
progressions each of size 2m+ 1.

Proof. Let gj = (p1; p2; p3; pj) for j ≥ 2. Assume again without loss of generality that p1 = 0
and p2 = 1. Since P is a cocyclic set then we know that gj ∈ R for all j ≥ 3. Suppose Q is a
(P, c)-rich set with |Q| = n > N0, where N0 is given by Theorem 1. Thus Q contains a GP (m) set.
Define the lines

`1 =
v

1− p3 +
z

1− p3R and

`j = (u+ gjv) +
zpj
p3
R for j ≥ 2.

Clearly Lj ⊆ `j and every Lj contains a 2m+1 arithmetic progression. Now consider the similarity
transformation T : C→ C given by T (w) = p3

z w − u
z . By definition we have

T (`1) = x+
p3

1− p3R and
T (`j) = x(1− pj) + pjR for j ≥ 2,
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where x = p3(u+v)−u
z(1−p3) . A simple calculation shows that Rj := T (`j) ∩ T (`2) is given by

R1 =
p3(1− p3)x− p3(1− p3)x

p3 − p3 and

Rj =
pj(x̄+ xpj)− pj(x+ xpj)

pj − pj for j ≥ 3.

Using the fact that gj ∈ R and pj = p3(p3 + gj(1− p3))−1 we obtain for j ≥ 3

Rj =
p3(1− p3)x− p3(1− p3)x

p3 − p3 .

Therefore the set of lines {`1, `2, . . . , `k} is concurrent.

3 Cocyclic and collinear patterns

To complement the results from last section we present the following theorem, where for P a cocyclic
set, we construct a set contained in k concurrent lines and with many similar copies of P .

The proof of the theorem mimics, in a certain sense, the construction first done in [3]. The main
difference being the use of the cross ratios (p1; p2; p3; pj) instead of the value pj , this allows our set
to be contained in a set of at most k lines as opposed to have the grid-like structure described in
[3].

Theorem 2 For every k-element cocyclic or collinear set P with k ≥ 3 and SP (n) = Θ(n2), there
is a constant c = c(P ) > 0 and a collection of lines `1, `2, . . . , `k through the origin satisfying the
following property.

For every integer n ≥ k there is a n-element set An ⊂
Sk
j=1 `j satisfying SP (An) ≥ cn2.

Before we see the proof of the theorem let us state the following consequence which characterizes
the notion of cocyclicity (or collinearity) for finite sets.

Corollary 5 For every k-element set P satisfying SP (n) = Θ
¡
n2
¢
the following are equivalent.

1. P is cocyclic or collinear.

2. There is a constant c > 0 and arbitrarily large (P, c)-rich sets containing no k × k lattices.

Proof. Trivial for k ≤ 2. The implication (1)⇒(2) follows from Theorem 2 and the fact that
a set contained in k concurrent lines cannot contain a k × k lattice. (2)⇒(1) follows directly from
Corollary 2 using any value m ≥ (k − 1)/2.

Proof of Theorem 2. Assume without loss of generality that p1 = 0 and p2 = 1. Let g2 = 0,
g3 = 1, and gj = (0; 1; p3; pj) for 4 ≤ j ≤ k; note that gj ∈ R since P is cocyclic or collinear.
Since SP (n) = Θ

¡
n2
¢
, we have that by Laczkovich-Ruzsa Characterization Theorem [9] every gj

is algebraic. Let D be the degree of L = Q(g3, g4, . . . , gk) over Q and {h1, h2, . . . , hD} be a basis of
L over Q.
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We first prove the theorem for an increasing sequence {nm} of values of n. For every m ≥ 1
consider the following set of real numbers

Gm =
(

DX
i=1

aihi : ai ∈ Im
)
.

Clearly |Gm| = (2m+ 1)D. Let Jm = Gm×Gm\ {(a, b) ∈ Gm × Gm : bp3 − a = 0}. For every (a, b) ∈
Jm define the similarity transformation

Ta,b(z) =
p3(a− b)
p3 − 1 +

bp3 − a
p3 − 1 z.

Let nm =

¯̄̄̄
¯S(a,b)∈Jm1≤j≤k

Ta,b(pj)

¯̄̄̄
¯ and Anm = S(a,b)∈Jm1≤j≤k

Ta,b(pj). By definition we have

Ta,b(0) =
p3

p3 − 1(a− b), and Ta,b(pj) = pj (a(1− gj) + bgj) for j ≥ 2. (2)

Let `1, `2, . . . , `k be a collection of lines defined as follows,

P

A An n

P

4 1

Figure 1: Examples of the sets Anm for some sets P .

`1 :=

µ
p3

p3 − 1
¶
R, and `j := pjR for j ≥ 2. (3)

By construction we have that for every 1 ≤ j ≤ k[
(a,b)∈Jm

Ta,b(pj) ⊆ `j ,
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thus Anm ⊂
Sk
j=1 `j and Ta,b(P ) ⊂ Anm for every (a, b) ∈ Jm.

Now, if P is cocyclic then all the lines in (3) are pairwise different which together with (2) gives
Ta,b(P ) 6= Ta0,b0(P ) whenever (a, b) 6= (a0, b0). On the other hand, if P is collinear we can assume
p1 = 0 < p3 < p4 < . . . < pk < 1 = p2. If Ta,b (P ) = Ta0,b0 (P ) then either (a, b) = (a0, b0) or by (2)
P is symmetric with respect to 1/2 and T−1a,b ◦ Ta0,b0 (z) is a half-turn rotation with center 1/2. In
both cases, for each pair (a, b) there is at most one pair (a0, b0) 6= (a, b) such that Ta,b(P ) = Ta0,b0(P )
which means

SP (Anm) ≥
1

2
|Jm| ≥ 1

2

³
|Gm|2 − |Gm|

´
≥ 1
3
|Gm|2 . (4)

Now we will find appropriate bounds for the size of Anm in terms of |Gm|. To accomplish this
we need the following lemma.

Lemma 1 There are positive integers M,K independent of m so that for every 2 ≤ j ≤ k we have
that (Kgj)Gm ⊆ GMm.

Proof. Let y ∈ L = Q(g3, g4, . . . , gk). Express yhi as a linear combination of {h1, h2, . . . , hD}
over Q,

yhi =
DX
j=1

qi,jhj .

Suppose qi,j = ai,j/bi,j with ai,j , bi,j integers. Let K be the least common multiple of {bi,j} and
M0 the maximum of {|ai,j |}. Then for every z =

PD
i=1 zihi ∈ Gm we have

Kyz =
DX
i=1

ziKyhi =
DX
j=1

Ã
DX
i=1

ziKai,j
bi,j

!
hj ∈ Z(g3, g4, . . . , gk),

and ¯̄̄̄
¯
DX
i=1

ziKai,j
bi,j

¯̄̄̄
¯ ≤

DX
i=1

¯̄̄̄
ziKai,j
bi,j

¯̄̄̄
≤ KM0Dm.

So by letting M = KM0D we infer that (Ky)Gm ⊆ GMm. Clearly we can find common values of
K and M to make this work simultaneously for y = g2, g3, . . . , gk.

Besides this lemma we also need the following easy facts for generalized arithmetic progressions
of the form Gm: For any positive integers N,m1,m2,m we have that NGm ⊆ GNm and Gm1±Gm2 =
Gm1+m2 . Using these properties we have¯̄̄̄

¯̄ [
(a,b)∈Jm

Ta,b(p1)

¯̄̄̄
¯̄ = |Gm − Gm| = |G2m| (note that |Gm| ≤ |G2m| ≤ 2D |Gm| )

and for j ≥ 2,¯̄̄̄
¯̄ [
(a,b)∈Jm

Ta,b(pj)

¯̄̄̄
¯̄ = |(1− gj)Gm + gjGm| ≤ |KGm −KgjGm +KgjGm|

≤ |GKm − GMm + GMm| =
¯̄G(K+2M)m¯̄ ≤ (K + 2M)D |Gm| ,¯̄̄̄

¯̄ [
(a,b)∈Jm

Ta,b(pj)

¯̄̄̄
¯̄ = |(1− gj)Gm + gjGm| ≥ |Gm| .
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So by letting c1 = k and c2 = k(K + 2M)D we have

c1 |Gm| ≤ nm ≤ c2 |Gm| . (5)

Hence by (4) we conclude that SP (Anm) ≥ 1
3 |Gm|2 ≥ 1

3c
−2
2 n

2
m.

To prove the result for arbitrary n ≥ k we note that, using (5) and |Gm| = (2m+ 1)D, there is
a constant c3 independent of m such that nm < nm+1 ≤ c3nm. Thus, if nm < n ≤ nm+1 we let An
be the set Anm constructed before together with n−nm extra points in the line `1. It is clear that
SP (An) ≥ c4n2 which completes the proof.

Remark. If P is collinear all the lines in (3) are the same. If P is cocyclic then all the lines in (3)
are different and every similar copy of P lies on a circle passing through the origin.

4 Proof of Theorem 1

The proof of our main result will be based on some deep results of Combinatorial Number Theory,
namely those which describe the structure of small sumsets. These results are usually stated for
subsets of the integers, but they are in fact true for subsets of any torsion-free abelian group [10],
in particular for subsets of C. The notion of generalized arithmetic progressions (first introduced
by Szemerédi [12] in his famous paper) is involved in all of these results. For any d positive integer,
{n1, n2, . . . , nd} ⊆ N, and {z1, z2, . . . , zd} ⊆ C\{0}, we call the set

G =
(

dX
i=1

kizi : 0 ≤ ki < ni
)

a generalized arithmetic progression of dimension d and parameters {ni} and {zi}. In what follows
the symbol Gd,n will denote a generalized arithmetic progression of dimension not exceeding d and
size n. For short we will use expressions like “there exists a Gd,n”.

From now on we assume A,B ⊆ C, |A| = |B| = n, and E ⊆ A×B. We write A+B = {a+ b :
a ∈ A, b ∈ B} and A+E B = {a+ b : (a, b) ∈ E}.

Using exponential sums and methods from the geometry of numbers. Freiman obtained the
following result that describes the structure of A+B when the cardinality of such set is not much
greater than n. Later Ruzsa found a simpler proof [11].

Theorem A (Freiman [7]) For every C > 0 there is a positive constant c = c(C) and a natural
number d = d(C) satisfying the following property.

If |A+B| ≤ Cn then A ∪B is contained in a Gd,cn.

Balog and Szemerédi found a statistical version of this theorem, by relaxing the assumption
that all pairwise sums must be taken into account, and just considering the sums of cn2 pairs.

Theorem B (Balog, Szemerédi [2]) For every C1, C2 > 0 there are positive constants c1 = c1(C1, C2),
c2 = c2(C1, C2), and a natural number d = d(C1, C2) satisfying the following property.

If |A+E B| ≤ C1n and |E| ≥ C2n
2 then there is a Gd,c1n satisfying |A ∩ Gd,c1n| ≥ c2n and

|B ∩ Gd,c1n| ≥ c2n.

Laczkovich and Ruzsa took this theorem a step further by proving the following generalization,
which is precisely the result we use for the proof of Theorem 1.
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Theorem C (Laczkovich, Ruzsa [9]) For every C1, C2 > 0 there are positive constants c1 =
c1(C1, C2), c2 = c2(C1, C2), and a natural number d = d(C1, C2) satisfying the following prop-
erty.

If |A+E B| ≤ C1n and |E| ≥ C2n2 then there is a Gd,c1n satisfying
|E ∩ (Gd,c1n × Gd,c1n)| ≥ c2n2.

The following lemma, which is a consequence of Theorem C, is used in the proof of Theorem 1.
Any proof with explicit bounds of this lemma would in turn provide explicit bounds for the results
in this paper.

Lemma 2 For every C1, C2 > 0 there is a positive constant c3 = c3(C1, C2) such that for every
positive integerM , there is a threshold function N = N(C1, C2,M) satisfying the following property.

For every n ≥ N , if |A+E B| ≤ C1n and |E| ≥ C2n2 then there are arithmetic progressions
G1,G2 of length l ≥M and common difference such that

|E ∩ (G1 × G2)| ≥ c3l2.
Proof. By Theorem C, applied to the sets A and B, there are positive constants c1, c2,

a positive integer d (all depending on C1 and C2 only), and G = Gd,c1n a generalized arithmetic
progression satisfying |(G × G) ∩E| ≥ c2n2. Suppose G is given by

G =
(

dX
i=1

kizi : 0 ≤ ki < ni
)

with n1 ≥ n2 ≥ . . . ≥ nd ≥ 1 and
Qd
i=1 ni = c1n. Let c3 = c2/c

2
1, N =Md/c1, and l = n1.

For every r = (r2, r3, . . . , rd) ∈ [n2]× [n3]× · · · × [nd] define

Gr =
(
k1z1 +

dX
i=2

rizi : 0 ≤ k1 < n1 = l
)
.

Observe that X
r,s∈[n2]×[n3]×···×[nd]

|(Gr × Gs) ∩E| ≥ |(G × G) ∩E| ≥ c2n2

so by an averaging argument there are R1, R2 ∈ [n2]× [n3]× · · · × [nd] satisfying
|E ∩ (GR1 × GR2)| ≥ (c2/c21)n21 = c3l2.

Notice that GR1 and GR2 are arithmetic progressions with common difference z1. If n ≥ N then
ld = nd1 ≥ c1n ≥ c1N = Md, i.e., l ≥ M and thus GR1 ,GR2 is the required pair of arithmetic
progressions.

The other main ingredient for our proof is a two dimensional generalization of the famous
Szemerédi Theorem [12] regarding the existence of long arithmetic progressions among subsets of
Z with positive density. The theorem is due to Fürstenberg and Katznelson and was obtained by
means of Ergodic Theory [8]. No quantitative proof of this result is known.

Theorem D (Fürstenberg, Katznelson [8]) For every integer m and constant c > 0 there is a
threshold function N1 = N1(c,m) with the following property.

For every n ≥ N1, if A ⊆ [n]× [n] and |A| ≥ cn2 then A contains an m×m square sublattice,
i.e., a set of the form (a1 + b[m])× (a2 + b[m]) with a1, a2, b positive integers.
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Finally we are in a position to prove the main theorem.

Proof of Theorem 1. First assume without loss of generality that p1 = 0 and p2 = 1. Suppose
Q is a (P, c)-rich set of size n. Let A = p3Q,B = (1− p3)Q, and

E =

½
(a, b) ∈ A×B : bp3 6= a (1− p3) and apj

p3
+ b

1− pj
1− p3 ∈ Q for all j

¾
Consider the function f : E → {X ⊂ Q : X ∼ P} given by

f(a, b) =

½
a
pj
p3
+ b

1− pj
1− p3 : 1 ≤ j ≤ k

¾
=

½
b

1− p3 +
µ
a

p3
− b

1− p3

¶
pj : 1 ≤ j ≤ k

¾
.

Observe that f is well defined since a/p3 − b/(1 − p3) 6= 0 by assumption (i.e., bp3 6= a(1 − p3)).
Let X ⊆ Q satisfy X ∼ P , thus X = w + zP for some w, z ∈ C and z 6= 0. Let a = p3(w + z) and
b = w(1− p3), notice that (a, b) ∈ E and w + zpj = a

pj
p3
+ b

1−pj
1−p3 ∈ Q. Thus f(a, b) = X, i.e., f is

surjective.
Therefore |E| ≥ |{X ⊂ Q : X ∼ P}| = SP (Q) ≥ cn2, and additionally |A+E B| ≤ n since

A +E B ⊆ Q. So we have the exact hypothesis of Lemma 2 with C1 = 1 and C2 = c. Let
M = N1(c3, 2m+1) and N0 = N (1, c,M), where N1 and N are the respective threshold functions
of Theorem D and Lemma 2. Therefore, by Lemma 2 there are arithmetic progressions G1,G2 of
length l ≥M and common difference such that

|E ∩ (G1 × G2)| ≥ c3l2. (6)

Suppose Gi = {u1 + jz : 0 ≤ j < l} for i = 1, 2. Identify G1×G2 with [l]×[l] and E∩(G1×G2)with
the corresponding subset of [l] × [l]. Now, since l > M = N1(c3, 2m + 1) then using (6) as the
hypothesis for Theorem D we conclude that E ∩ (G1 × G2) contains a (2m+ 1)× (2m+ 1) square
sublattice S1 × S2. Suppose Si = ûi + tzIm for i = 1, 2, with t a positive integer and û1 ∈ G1,
û2 ∈ G2. Since S1 × S2 ⊆ E we have

Lj :=
pj
p3
S1 +

1− pj
1− p3S2 ⊂ Q for 1 ≤ j ≤ k.

Hence
Sk
j=1 Lj is the required GP (m) set contained in Q.

Remark. We actually proved that Q contains a GP (m) set for every choice of the triplet p1, p2, p3.
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[5] P. Erdős and G. Purdy, Some Extremal Problems in Geometry III. Proc. 6 th Southeastern
Conference in Combinatorics, Graph Theory and Comp. (1975), 291-308.
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