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Abstract

We study the number of crossings among edges of some higher order proximity graphs of the
family of the Delaunay graph. That is, given a set P of n points in the Euclidean plane, we
give lower and upper bounds on the minimum and the maximum number of crossings that these
geometric graphs defined on P have.

1 Introduction

Let P be a set of n points in the plane in general position (no three are collinear). A geometric graph
on P is a graph with vertex set P and such that its edges are drawn as straight-line segments. When
two edges share an interior point we say that they give rise to a crossing.

The number of crossings is a parameter that has been attracting extensive studies in the context of
combinatorial graphs. Given a graph G, the crossing number of G, denoted by ¢r(G), is the minimum
number of crossings in any drawing of G, i.e., in any non-degenerate representation of the graph in the
plane. The rectilinear crossing number of G, denoted by ¢r(G), is the smallest number of crossings in
any drawing of G in which the edges are represented by straight-line segments.

There are several classes of graphs for which the number of crossings has been computed or ap-
proximated. There are also several results sensitive to the size of the graph -particulary the famous
crossing lemma [5, 12, 6]- and to the exclusion of some configurations [6, 13, 15, 19, 8].

The most famous problems in this setting are to obtain the exact values of the crossing number
and the rectilinear crossing number of the complete graph K, and the complete bipartite graph K, ,,.
Recently some of these problems have received a great amount of attention and a continous chain of
improvements has led to the bounds shown in Table 1.
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Table 1: Current bounds on the crossing number and the rectilinear crossing number of K,, and K, ;.
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In this paper the graphs under study are some higher order proximity graphs of the family of
the Delaunay graph. In a proximity graph of a set of points in the plane two points are connected
by a straight-line segment if some proximity rule is satisfied. There are several rules that have been
proposed in the literature leading to different proximity graphs (see the survey [10]); here we focus
on the k-nearest neighbour graph, the k-relative neighbourhood graph, the k-Gabriel graph and the
k-Delaunay graph.

If P is a set of points in the plane, each of the specified proximity graphs is a geometric graph on P
that has some number of crossings that will be denoted by X (). For example, consider the k-nearest
neighbour graph of P (k-NNG(P) for short). We define the lowest crossing number of k-NNG(n) and,
respectively, the worst crossing number of k-NNG(n) as

ler(k-NNG(n)) = IITIZH X (k-NNG(P)),
wer(k-NNG(n)) = |11£1\{£§Lg(k_NNG(P))'

We define analogous parameters for all the mentioned proximity graphs and give upper and lower
bounds for all cases. We are only interested in & > 1 (k > 2 for k-NNG(P)), because otherwise we
recover the simplest versions of the graphs, which are known to be planar.

Observe that there is a subtle difference between the lowest crossing number and the rectilinear
crossing number, as the former does not deal with purely combinatorial graphs, but with geometric
ones. In fact, the lowest crossing number of a proximity graph equals the rectilinear crossing number
of the drawings of all graphs that can be represented as this proximity graph.

An important part of our research has been devoted to look at particular cases in which k is small
(see Sections 2 and 3). This decision is well-grounded, as it has been explained in the literature (for
example, in [1] and [9]) that these are the most interesting cases from an applications point of view. In
Section 4 we look at the number of crossings for large values of k. We point out that our results hold
if, besides not containing three collinear points, P satisfies two more non-degeneracy assumptions: no
four points are concyclic and, for each p € P, the set of its k nearest points in P is well-defined.

Full proofs and examples can be found in [3].

2 Bounds on lcr(k--NNG(n)) for small values of k

We define the k-nearest neighbour graph of P, denoted by k-NNG(P), as the geometric graph on P in
which two points p;, p; are joined by an edge if either p; is one of the £ nearest neighbours in P of p;
or viceversa.

In this section we provide bounds on the lowest crossing number of the k-nearest neighbour graph
for small values of k. Because of the hierarchical relation satisfied by the graphs we investigate (see
Section 4), the lower bounds also hold for the lowest crossing number of the other proximity graphs if
we shift the value of k£ one unit down.

The results we have obtained are summarized in Table 2. Refer to [3] for a more detailed analysis.
Due to space limitations, here we only explain the case k = 10.

The lower bound for lcr(10-NNG(n)) follows from the following result, proved in [14]:

Theorem 2.1. The crossing number of any graph G with v(G) > 3 vertices and e(G) edges satisfies

Indeed we know that the number of edges of the 10-nearest neighbour graph of P is greater than
or equal to 5n, as each vertex has degree at least 10. So we have
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R (10-NNG(P)) = er(10-NNG(P)) > £e(10-NNG(P)) — 2 (v(10-NNG(P)) — 2) = == + 7.
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Table 2: lcr(k-NNG(n)) for the first values of k.

As for the upper bound, consider the configuration in Figure 1 (a precise description of the point
coordinates can be found in [3]). An easy assignment of crossings to points shows that each point
that is not in the boundary of the set or in the next layer causes four crossings. The points in the
boundary and the next layer add ©(y/n) crossings. Observe that the point positions can be slightly
perturbed without modifying the ten nearest neighbours of each point. Thus, if we arrange the points
in circular strips and each strip contains exactly the minimum number of points ensuring that the
adjacencies in the 10-nearest neighbour graph do not change, the number of points in the boundary of
the set becomes constant. Consequently, the 10-nearest neighbour graph of the resulting set of points
has 4n + ©(1) crossings.

Figure 1: 10-NNG(P) with 4n + ©(y/n) crossings.

3 1-Delaunay graphs

The k-Delaunay graph of P, which was introduced in [1] and will be denoted by k-DG(P), is the
geometric graph with vertex set P, and an edge between points p; and p; if there exists a disk through
p; and p; with at most k points of P in its interior.



We have already remarked that, from the viewpoint of applications, the most significant k-Delaunay
graphs are those where the value of k is very small. In this section we carry out a detailed analysis of
the 1-Delaunay graph.

As in [1], we have studied the general case but we have also devoted some attention to the situation
where all points are in convex position. Our contributions are presented in Table 3. As all the proofs

for the general case are quite long, we only describe here the value of Icr in the convex case. Specifically,
n

we prove that, if P is in convex position, lcr(1-DG(n)) = 6n — 3| 5| — 19.

’ ‘ general case ‘ convex case ‘
lcr n—4 6n—3|5] —19
wer | n? +0(n) <wcr < 4n? 4+ O(n) %2 +0(n) <wcr < %’2 +0O(n)

Table 3: 1-Delaunay graphs.

Let e, = e¢(0-DG(P)) = 2n — 3 and e, = e(1-DG(P)) — e(0-DG(P)). In [1] it is shown that
er > f%} —5=2n— 5] — 5. We make use of this result to prove the lower bound for lcr(1-DG(n)) :

Theorem 3.1. For every set P in convex position, X (1-DG(P)) > 6n — 35| — 19.

Proof. Note that all edges forming an ear in P are in 1-DG(P), and that the number of crossings
between two edges of this type is n. Let H be the graph obtained from 1-DG(P) by removing these
edges and the ones in the convex hull of P. Since the size of 1-DG(P) is e + e, H contains at least
2n — [ 5] — 8 edges. Each of them induces two crossings with the ear edges.

Let H, be a maximal planar subgraph of H. It is easy to see that H,, contains at most n — 5 edges.
Thus there are at least n — [5] — 3 edges in H but not in Hp, each of which induces at least one
crossing with an edge of H,.

Adding everything up, we can conclude that 1-DG(P) has no less than 6n—3| 5| — 19 crossings. [J

The point set in Figure 2, which is carefully described in [3], shows that this bound can be attained
and, consequently, is best possible.

Figure 2: 1-DG(P) with 6n — 3| 5] — 19 crossings.

4 General bounds

In this section we are interested in the asymptotic behavior when k is large of the number of crossings
in the graphs under study. First we define the two remaining graphs.

For every pair of points p;,p; € P, let O-LENS(p;, p;) = {# € R? : |p;z| < |pip;| and |p;z| < |pip;|}-
The k-relative neighbourhood graph of P, denoted by k-RNG(P), is the geometric graph on P where



two vertices p;, p; are adjacent if O-LENS(p;, p;) contains at most k points in P. The graph k-RNG(P)
was introduced in [7].

Now let C-DISC(p;, p;) be the closed disc centered at the midpoint of the segment p;p; with both
p; and p; on its boundary. The k-Gabriel graph of P, denoted by k-GG(P), is the geometric graph
with vertex set P, and an edge between points p; and p; if C-DISC(p;,p;) contains at most k points in
P different from p;, p;. The first definition of the k- Gabriel graph, which is slightly different from ours,
was given in [18].

We have derived bounds for both the lowest crossing number and the worst crossing number of all
graphs (see Table 4). In some cases, we have used the fact that there exists a relation of containment
among the different classes of proximity graphs we have presented:

(k +1)-NNG(P) C k-RNG(P) C k-GG(P) C k-DG(P).

E-NNG(n) | k-RNG(n) | k-GG(n) | k-DG(n)

128 1.3 128 1.3 128 1.3 128 1.3

ler> | gigork n | gigorkn | srsarktn | Fisapkn
2 1.3 128 1.3 128 1.3 128 1.3

ler < sz k’n sazk | sezktn | osktn
17.3 17.3 12,2 172, 2
wcr > gk n gk n 1kn skn
wer < kn 9k3n %anz %k;QnQ

Table 4: General bounds.

The lower bounds for the lowest crossing numbers follow from an improved version of the crossing
lemma proved in [14]. As for the upper bounds, we use a construction given in [16] of a graph with
fixed size and few crossings, and show that it can be seen as a higher order proximity graph.

In contrast, our approach to bound from above the worst crossing numbers relies strongly on the
geometric properties of each particular graph. As a representative example, we sketch the proof of the
upper bound for wer(k-RNG(n)).

Lemma 4.1. In any angular sector with apex p € P and amplitude o < 7/3 there are at most k + 3
points in P that are connected to p in the graph k-RNG(P).

Theorem 4.2. For every point set P, X (k-RNG(P)) < 9k3n + o(k3n).

Proof. We use a charging scheme that assigns every crossing in k&-RNG(P) to each of the two involved
edges e satisfying that at least one of the endpoints of the other edge is contained in the lens associated
to e.

Each crossing defines a quadrilateral that has at least one obtuse angle at some vertex p;. If the
diagonal opposite to this obtuse angle is the edge p;px, p; is contained in the lens associated to p;py,
so the crossing is assigned to (at least) the edge p;ps.

Now we bound the maximum number of crossings that may be assigned to an edge e. The lens
associated to e contains at most k points in P. By Lemma 4.1, each of these points is adjacent to no
more than 3k + 9 other points in P such that the edge that connects them crosses e. Consequently, at
most 3k2 + 9k crossings may be assigned to e.

Since each vertex in P has degree at most 6k+18 (see Lemma 4.1), the number of edges of k-RNG(P)
is bounded by 3kn + o(kn), which yields the theorem. O
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