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Abstract

We give a new upper bound for the rectilinear crossing number cr(n) of the complete geo-
metric graph Kn. We prove that cr(n) ≤ 0.380559

¡
n
4

¢
+Θ(n3) by means of a new construction

based on an iterative duplication strategy starting with a set having a certain structure of
halving lines.
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1 Introduction
The crossing number cr (G) of a simple graph G is the minimum number of edge crossings in any
drawing of G in the plane, where each edge is a simple curve. The rectilinear crossing number cr (G)
is the minimum number of edge crossings in any geometric drawing of G, that is a drawing of G
in the plane where the vertices are points in general position and the edges are straight segments.
The crossing numbers have many applications to Discrete Geometry and Computer Science, see for
example [9] and [10].
In this paper we contribute to the problem of determining cr (Kn), where Kn denotes the com-

plete graph on n vertices. Specifically, we construct geometric drawings of Kn with a small number
of crossings. For simplicity we write cr (n) = cr (Kn). We note that a geometric drawing of Kn is de-
termined by the location of its vertices and two edges cross each other if and only if the quadrilateral
determined by their vertices is convex. Thus our drawings also provide constructions of n-element
point sets with small number of convex quadrilaterals determined by the n points. The problem of
finding the asymptotic behavior of cr (n) is also important because of its close relation to Sylvester’s
four point problem [13]: determine the probability that four points selected uniformly at random on
a given domain, form a convex quadrilateral. It is easy to see that {cr (n) /
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n
4

¢} is a non-decreasing
sequence bounded above by 1. Thus v = limn→∞ cr (n) /

¡
n
4

¢
exists, and Scheinerman and Wilf [12]

proved that v is the infimum, over all open sets R with finite area, of the probability that four
randomly chosen points in R are in convex position.
When this problem was first investigated, the best lower bounds were obtained by using an

averaging argument over subsets whose crossing numbers were known. For example, it is well known
that cr(5) = 1, so by counting the crossings generated by every subset of size 5 it is easy to get
cr(n) ≥ (1/5)
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4

¢
. Wagner [14] was the first to use a different approach, he proved v ≥ 0.3288. Then

the authors [1] and independently Lovasz et al. [8], used allowable sequences to prove v ≥ 3/8 =
0.375. Lovasz et al. [8] managed to even improve this v by 10−5, and Balogh and Salazar [5] refined
this technique even further to obtain the currently best bound of v ≥ 0.37533.
The history of the improvements on the upper bounds is as follows: In the early seventies

Jensen [7] and Singer [11] obtained v ≤ 7/18 < 0.3888, and v ≤ 5/13 < 0.38462 respectively.
Much later Brodsky et al. [6] constructed point sets with nested non-concentric triangles yielding
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v ≤ 6467/16848 < 0.383844. Then Aichholzer et al. [3] devised a lense-replacement construction
depending on a suitable initial set. They obtained v ≤ 0.380739 and later on Jensen provided a
better initial set [4], which gave the previously known best bound of v ≤ 0.38062.
In this paper we prove the following,

Theorem 1 cr(n) ≤ 29969
78750
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¢
+Θ(n3) < (0.380559)
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¢
+Θ(n3).

This theorem is based on the following stronger result which may improve the upper bound in
the future. To accomplish this we would only need a point-set P having a halving-line matching
(defined next) and with a better
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¢
coefficient.

Theorem 2 If P is a N-element point set in general position, with N even, and P has a halving-line
matching; then

cr(n) ≤
µ

24 cr(P ) + 3N3 − 7N2 + (30/7)N

N4

¶µ
n

4

¶
+Θ(n3).

Let P = {p1, p2, . . . , pN} be a general position point set in the plane. We define a halving line of
P as a line passing through two points in P and leaving the same number of points of P on either
side of the line. According to this, N needs to be even for P to have a halving line.
Consider a bipartite graph G = (P,H) where H is the set of halving lines of P and p ∈ P is

adjacent to l ∈ H if p is on the line l. If there is a matching for P in the graph G we say that
this matching is a halving-line matching of P . Note that such a matching induces a function on P ,
pi 7→ pf(i), such that pipf(i) is a halving line of P .
In general, most even sets P minimizing the crossing number have a large number of halving

lines and consequently most of these sets have a halving-line matching. The only exception seems
to be P4, the set consisting of a triangle with a point inside. This set achieves cr(4) = 0 but it only
has three halving lines.
The previously best upper bound, obtained by Aichholzer et al. [3], used a lens-replacement

construction yielding

cr(n) ≤
µ

24 cr(P ) + 3N3 − 7N2 + 6N

N4

¶µ
n

4

¶
+Θ(n3) (1)

for any initial point set P with N elements, N even. Jensen (reported in [4]) discovered a set of 36
points with 21175 crossings which happened to be the best initial set known at the time. The bound
obtained is cr(n) ≤ (0.38062)

¡
n
4

¢
+Θ(n3). Note that our construction from Theorem 2 always gives

a better bound compared to (1) as long as the starting set P has a halving-line matching.

2 The Construction
The construction is based on the following lemma,

Lemma 3 If P is a N-element point set, N even, and P has a halving-line matching; then there
is a point set Q = Q(P ) in general position, |Q| = 2N , Q also has a halving-line matching, and
cr(Q) = 16cr(P ) + (N/2)(2N2 − 7N + 5).

Proof. Q is constructed as follows. Each point pi ∈ P will be replaced by a pair of points qi1
and qi2. Using the function f induced by the halving-line matching we define

qi1 = pi + ε
pf(i) − pi°°pf(i) − pi

°° and qi2 = pi − ε
pf(i) − pi°°pf(i) − pi

°° ,
where ε is small enough so that all points qj1, qj2 coming from a point pj located to the left (right)
of −−−−→pipf(i); are also located to the left (right) of the lines qi1qf(i)1 and qi1qf(i)2. In other words, the
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cone with vertex qi1 spanned by the segment qf(i)1qf(i)2 does not contain any of the points qjx with
j 6= i, f(i). One way to find such an ε is the following: suppose that P is contained in a disk with
diameter D, since P is in general position there is δ > 0 so that the strips of width δ centered at the
lines pipf(i) have only the points pi and pf(i) with P in common. The portion contained in the disk
of any cone with center in the line pipf(i), axis pipf(i), and with an opening angle of 2 arctan(δ/2D);
is a subset of the strip of width δ around pipf(i). Thus we can start with a small arbitrary value
ε0 < δ such that all points qj1, qj2 are inside the disk. Obtain εi as the distance from pf(i) to the
lines subtending the cone with center qi1, axis pipf(i), and angle 2 arctan(δ/2D). And finally set ε
as the minimum of all the εi.

Figure 1: Construction of the set Q

From the halving-line matching definition we deduce that no two points in P are associated to
the same halving line. This, together with the choice of ε, guarantees that Q is in general position
whenever P is in general position. By construction the line qi1qi2 is a halving line of Q. In addition,
since qi1 is in the interior of the triangle qi2, qf(i)1, qf(i)2 the line qi1qf(i)1 (and also the line qi1qf(i)2)
is a halving line of Q. Then

{¡qi1,←−−−−→qi1qf(i)1
¢

: i = 1, 2, . . . , N} ∪ {(qi2,←−−→qi1qi2) : i = 1, 2, . . . , N}
is a halving-line matching of Q.
Now we proceed to calculate cr(Q) by counting crossings according to three different types:

Type I Type II(1) Type II(2) Type III

i

i i

j

j
j f i= ( )

k k

Figure 2: Different types of crossings

Type I. Two points in pair i and two in pair j 6= i. There are
¡
N
2

¢
ways of choosing pairs i and j

and all of them determine a crossing except when j = f(i) or i = f(j). Since there are exactly
N pairs (i, f(i)), the total number of crossings in this case is

¡
N
2

¢−N .

Type II Two points in pair i and the two other in pairs j and k all pairs distinct. First there are
N choices for the pair i. Then we have two cases, when j, k 6= f(i), and when either j or k
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equals f(i). In the first case (see Figure 2, TypeII(1)), to have a crossing, both pj and pk must
be on the same side of the line qi1qi2. Thus there are 2

¡
N/2−1
2

¢
ways of choosing j and k and

then 4 choices for the second indices x and y for the points qjx and qky. In the second case
(see Figure 2, TypeII(2)) we can assume j = f(i). Then there are 2 choices for the second
index x of qjx. Again, to have a crossing, we need qjx and pk on the same side of qi1qi2. So
there are N/2 − 1 ways of choosing k and 2 choices for the second index y of qky. The total

number of Type II crossings is N
³
8
¡
N/2−1
2

¢
+ 4 (N/2− 1)

´
.

Type III Each point in a different pair. To have a crossing each of the four pairs must come from
a crossing in P , so there are cr(P ) possible pairs, and there are 2 choices for the second index
in each pair. Thus there are 16cr(P ) number of crossings of Type III.

The list of crossings types is complete since by construction none of the segments qi1qi2 participate
in any crossing. Adding Types I-III yields the result.

n cr(Pn) cr(Q(Pn)) old bound for cr(2n) new bound for cr(2n)
30 9726 179541 ≤ 179554 ≤ 179541
36 21175 381010 ≤ 381020 ≤ 381010
48 71028 1239096 ≤ 1239139 ≤ 1239096

Table 1: Improved bounds for 60,72,and 96 points.

The strength of this Lemma can be easily seen when it is applied to the set P6 that minimizes
cr(6) = 3. We obtain cr(12) ≤ cr(Q) = 153 which happens to be the correct value of cr(12) (a
drawing is shown in Figure 1). It took some effort [3] to find this point set in the past. In addition,
if we use the sets P30, P36, P48 obtained by Aicholzer et al., and reported in web page [2], we obtain
sets P60, P72, P96 with less number of crossings than those previously known (see Table 1).

ith point = pi = (x-coordinate, y-coordinate)
p1 = (9259, 16598) p9 = (28477, 16613) p17 = (5141, 23755) p25 = (9075, 15320)
p2 = (9763, 16199) p10 = (15909, 16415) p18 = (9154, 17055) p26 = (7921, 13407)
p3 = (9977, 16397) p11 = (9446, 15905) p19 = (0, 32394) p27 = (5206, 8451)
p4 = (10248, 16225) p12 = (9540, 16541) p20 = (6820, 20921) p28 = (9121, 15603)
p5 = (10666, 16385) p13 = (9262, 16627) p21 = (9949, 16415) p29 = (480, 0)
p6 = (12849, 16335) p14 = (9282, 16947) p22 = (9355, 16177) p30 = (6432, 10637)
p7 = (18577, 16451) p15 = (8912, 17261) p23 = (9419, 15893)
p8 = (10391, 16281) p16 = (7842, 19232) p24 = (9146, 15771)

Table 2: Coordinates of point set P30 with 9776 crossings

3 Proof of the Theorems
Let S0 = P and Sk+1 = Q(Sk) for k ≥ 0, where Q(Sk) is the set given by Lemma 3. By induction
and Lemma 3 it follows that

cr(Sk) = 16kcr(P ) + N38k−1
¡
2k − 1

¢− 7

6
N24k−1

¡
4k − 1

¢
+

5

14
N2k−1

¡
8k − 1

¢
.

Letting n = |Sk| = 2kN we get

cr(n) ≤ cr(Sk) =

µ
24cr(P ) + 3N3 − 7N2 + (30/7)N

24N4

¶
n4 − 1

8
n3 +

7

24
n2 − 5

28
n.
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a, (a, b) means (pa, papb)
1, (1, 3) 9, (9, 13) 17, (17, 18) 25, (25, 26)
2, (2, 4) 10, (10, 11) 18, (18, 19) 26, (26, 27)
3, (3, 7) 11, (11, 12) 19, (19, 21) 27, (27, 28)
4, (4, 5) 12, (12, 14) 20, (20, 21) 28, (28, 29)
5, (5, 8) 13, (13, 14) 21, (21, 23) 29, (29, 27)
6, (6, 7) 14, (14, 15) 22, (22, 23) 30, (30, 29)
7, (7, 9) 15, (15, 16) 23, (23, 24)
8, (8, 10) 16, (16, 20) 24, (24, 25)

Table 3: Halving-line matching of P30

This proves Theorem 2. Now, to prove Theorem 1, consider the set P = P30 with coordinates in
Table 2 obtained from [2]. It satisfies that cr(P30) = 9726 and it can be verified that the set of
point-line pairs in Table 3 represents a halving-line matching of P30. We then get

cr(n) ≤ 29969

78750

µ
n

4

¶
+Θ(n3).
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