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Abstract

Recently, Aichholzer, Garćıa, Orden, and Ramos derived a remarkably improved
lower bound for the number of (≤ k)-edges in an n-point set, and as an immediate
corollary, an improved lower bound on the rectilinear crossing number of Kn. We
use simple allowable sequences to extend all their results to the more general setting
of simple generalized configurations of points and slightly improve the lower bound
on Sylvester’s constant from 0.37963 to 0.379688. In other words, we prove that the
pseudolinear (and consequently the rectilinear) crossing number of Kn is at least
0.379688

(
n
4

)
+ Θ

(
n3
)
. We use this to determine the exact pseudolinear crossing

numbers of Kn and the maximum number of halving pseudolines in an n-point set for
n = 10, 11, 12, 13, 15, 17, 19, and 21. All these values coincide with the corresponding
rectilinear numbers obtained by Aichholzer et al.

1 Introduction

A pseudoline is a simple curve in the plane extending infinitely in both directions. An
arrangement of pseudolines is a set of pseudolines where every two of them intersect
exactly once (where they cross). A simple generalized configuration of points consists of
a set S of points in the plane together with an arrangement of pseudolines, each spanning
exactly two points of S. When these pseudolines are all straight lines, the generalized
configuration is completely determined by the point-set S, which must be in general
position. Such a configuration is called geometric. Concepts like k-sets, halving lines,
and rectilinear crossing numbers, that have been studied in the geometric setting, are
naturally extended to the pseudolinear setting. Recall that a subset T of a point set S
is a k-set, if |T | = k and some line separates T from S \ T . A subset T is a (≤ k)-set,
if it is a t-set with t ≤ k. A directed segment spanned by two points of S is a k-edge,
if there are exactly k points of S in the right open halfplane defined by the segment. A
directed segment is a (≤ k)-edge, if it is a t-edge with t ≤ k.

Goodman and Pollack [11], [12, 13] showed a duality between the family of simple
generalized configurations of points and simple allowable sequences, defined in the next
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section. We use simple allowable sequences to approach two important, closely related,
open problems in discrete geometry: the determination of the minimum number of (≤ k)-
edges in a configuration of n points, and the determination of the rectilinear crossing
number of Kn, denoted by cr (Kn). The close relationship between these problems
was independently unveiled by Ábrego and Fernández-Merchant [1], and by Lovász,
Vesztergombi, Wagner, and Welzl [14]. For a concise, up-to-date overview on these and
related problems see the monograph [9].

A recent major breakthrough from Aichholzer et al. [5] is an improved lower bound
on the minimum number of (≤ k)-edges and, as an immediate corollary, the improved
lower bound cr (Kn) ≥ 0.37962

(
n
4

)
+ Θ

(
n3
)
. We show that both results hold in the

pseudolinear setting. Specifically, if χ≤k (n) denotes the minimum number of (≤ k)-
pseudoedges in a simple generalized configuration on n points and c̃r (Kn) denotes the
pseudolinear crossing number of Kn (precise definitions are given in Section 2), then
we prove χ≤k (n) ≥ 3

(
k+2
2

)
+ 3
(
k−bn/3c+2

2

)
− Θ(k) and c̃r (Kn) ≥ 0.37962

(
n
4

)
+ Θ

(
n3
)
.

Furthermore, using a result by Balogh and Salazar [8], we further improve this bound
to c̃r (Kn) ≥ 0.379688

(
n
4

)
+ Θ

(
n3
)
. In an earlier version of [5], Aichholzer et al. used

a weaker result by Lovász et al. [14] to improve the 0.37962 to 0.37963. After learning
from our work they have incorporated our improvement on their final version.

The value 0.379688 above is a lower bound on Sylvester’s constant [17] defined as
v = limn→∞ cr (Kn) /

(
n
4

)
. Scheinerman and Wilf [15] proved that v is the infimum, over

all open sets R with finite area, of the probability that four randomly chosen points in
R are in convex position.

Finally, as it was done for the geometric case [5], we can determine the values
c̃r (K10) = 62, c̃r (K11) = 102, c̃r (K12) = 153, c̃r (K13) = 229, c̃r (K15) = 447, c̃r (K17) =
798, c̃r (K19) = 1318, and c̃r (K21) = 2055. We also determine the maximum num-
ber h̃(n) of halving pseudolines (that is, b(n− 2)/2c-pseudoedges) spanned by a simple
generalized configuration on n points for n = 10, 11, 12, 13, 15, 17, 19, and 21.

Besides the generalizations and improvements mentioned above, this paper is an
attempt to show the simplicity that allowable sequences bring to these problems. Surely
the best example of these simplifications is provided by comparing the proofs of Theorem
10 in [5] and its generalization, our Proposition 5 (which are the key results in both
papers).

2 Simple allowable sequences, (≤k)-pseudoedges, and c̃r(Kn)

A simple allowable sequence Π is a doubly-infinite sequence (..., π−1, π0, π1, ...) of per-
mutations on n elements, such that any two consecutive permutations differ by a trans-
position of neighboring elements, and such that for every i, πi is the reverse permutation
of πi+(n

2)
. Thus Π has period 2

(
n
2

)
, and any of its halfperiods contains all necessary

information to reconstruct Π.
Let Π = {π0, π1, . . . , π(n

2)
} be a halfperiod of a simple allowable sequence Π. Thus,

for each i ≥ 1, πi−1 differs from πi by a transposition of adjacent elements, whose
initial and final permutations are πi−1 and πi, respectively. A transposition of Π (or
of any subsequence of a halfperiod of Π) is a k-transposition if it swaps elements in
positions k and k + 1, and a (≤k)-transposition if it is an i-transposition for either some
i ≤ k or some i ≥ n − k. Let Nk(Π) (respectively N≤k(Π)) denote the set of all k-
transpositions (respectively, (≤ k)-transpositions) in Π. Let Nk(Π) := |Nk(Π)|, and
N≤k(Π) := |N≤k(Π)|.
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A drawing of a graph G is pseudolinear if each edge can be extended to a pseudoline in
such a way that the resulting set is a simple arrangement of pseudolines. The pseudolinear
crossing number c̃r(G) of G is the minimum number of edge crossings in a pseudolinear
drawing of G. Not every drawing of Kn is pseudolinear, in fact both the rectilinear and
the pseudolinear crossing number of Kn are larger than the crossing number for n ≥ 10,
i.e., when the minimum is taken over all simple drawings of Kn.

In a simple generalized configuration S of n points, a j-pseudoedge, for 0 ≤ j ≤
⌊

n−2
2

⌋
,

is a pseudoline (in S) spanned by points p, q ∈ S, that divides S \ {p, q} into two
sets, one of size j and one (obviously) of size n − j − 2. A (≤k)- pseudoedge is a j-
pseudoedge with j ≤ k. We denote by χ≤k(S) the number of (≤k)-pseudoedges in S.
Goodman [11] established the duality between simple allowable sequences and simple
generalized configurations of points (see also the classic papers [12, 13]). Under this
setting, each (≤ k)-pseudoedge corresponds to a (≤k + 1)-transposition. That is, if Π is
a halfperiod of the simple allowable sequence generated by S then χ≤k (S) = N≤k+1 (Π).

Ábrego and Fernández-Merchant [1] (and although not explicitly stated there, this
also follows from [14]) used this correspondence to derive an expression for the number
of crossings in a pseudolinear drawing in terms of its corresponding allowable sequence.
They proved that if S is a simple generalized configuration of n points, and D is the
pseudolinear drawing of Kn induced by S, then the number c̃r(D) of crossings in D
satisfies c̃r(D) =

∑
1≤k≤(n−2)/2(n − 2k − 3)χ≤k−1(S) + Θ(n3). If Π is any halfperiod of

the simple allowable sequence Π defined by S, then c̃r(D) =
∑

1≤k≤(n−2)/2(n − 2k −
1)N≤k(Π) + Θ(n3). As c̃r(Kn) is the minimum of c̃r(D) over all pseudolinear drawings
D of Kn, it follows that

c̃r(Kn) ≥ min
Π

∑
1≤k≤(n−2)/2

(n− 2k − 1)N≤k(Π) + Θ(n3), (1)

where the minimum is taken over all halfperiods Π on n points.
In the geometric setting, the rectilinear crossing number of a graph G, denoted by

cr(G), is the minimum number of crossings in a drawing of G where the set of vertices
is in general position and the edges are straight line segments. As expected, in the
particular case in which a simple generalized configuration of points corresponds to a
configuration of n points in general position in the plane (as described in the previous
section), k-pseudoedges agree with k-edges. Also c̃r(G) ≤ cr(G) and thus any lower
bound for c̃r(G) is a lower bound for cr(G).

3 The main result

Our main result is that the bound obtained in [5] for (≤ k)-edges still holds in the more
general context of simple generalized configurations of points.

Theorem 1 For any simple generalized configuration S of n points, the number χ≤k(S)
of (≤k)-pseudoedges of S satisfies

χ≤k(S) ≥ 3
(

k + 2
2

)
+ 3
(

k − bn/3c+ 2
2

)
− 3 max

{
0,
(
k −

⌊n

3

⌋
+ 1
)(n

3
−
⌊n

3

⌋)}
.

We remark that a routine calculation shows that the lower bound in Theorem 1
equals the lower bound 3

(
k+2
2

)
+
∑k

j=bn/3c(3j − n + 3) in [5].
Since any (≤k)-pseudoedge corresponds to a (≤k + 1)-transposition, Theorem 1 is

equivalent to the following.
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Theorem 2 (Equivalent to Theorem 1) For any halfperiod Π on n points, the num-
ber N≤k(Π) of (≤ k)-transpositions of Π satisfies

N≤k(Π) ≥ 3
(

k + 1
2

)
+ 3
(

k − bn/3c+ 1
2

)
− 3 max

{
0,
(
k −

⌊n

3

⌋)(n

3
−
⌊n

3

⌋)}
.

Using (1) and Theorem 2 we can accurately estimate the
(
n
4

)
coefficient of c̃r(Kn) by

means of a definite integral:

c̃r(Kn) ≥ 24
(

n

4

) b(n−2)/2c∑
k=1

1
n

(
1− 2k

n

)
N≤k(Π)

n2
+ Θ(n3)

≥ 24
(

n

4

)∫ 1/2

0
(1− 2x)

(
3
2
x2 +

3
2

max
{

0, x− 1
3

}2
)

dx + Θ(n3)

=
41
108

(
n

4

)
+ Θ(n3) = 0.37962

(
n

4

)
+ Θ(n3).

To get the strongest possible result we incorporate the lower bound for N≤k(Π) obtained
by Balogh and Salazar (see Theorem 8 and Proposition 9 in [8]). This bound is better
than the bound from Theorem 2 when k > 0.4864n.

Theorem 3 c̃r(Kn) > 0.379688
(
n
4

)
+ Θ(n3).

Using Theorem 2 for n = 10, 11, 12, 13, 15, 17, 19, 21, we see that the vector of (≤ k)-
transpositions (for k = 1, 2, . . . , b(n − 2)/2c) is bounded below, entry wise, by the
vectors (3, 9, 18, 32), (3, 9, 18, 31), (3, 9, 18, 30, 48), (3, 9, 18, 30, 47), (3, 9, 18, 30, 45, 66),
(3, 9, 18, 30, 45, 64, 89), (3, 9, 18, 30, 45, 63, 86, 115), and (3, 9, 18, 30, 45, 63, 84, 111, 144),
respectively. The geometric constructions obtained by Aichholzer et al. [3, 4] match
these lower bounds. Thus c̃r (K10) = 62, c̃r (K11) = 102, c̃r (K12) = 153, c̃r (K13) = 229,
c̃r (K15) = 447, c̃r (K17) = 798, c̃r (K19) = 1318, and c̃r (K21) = 2055. It follows that the
number of halving pseudolines h̃(Π) in a halfperiod Π of a simple allowable sequence with
n points is given by h̃(Π) =

(
n
2

)
−N≤b(n−2)/2c(Π). Thus, as a consequence of Theorem 2,

h̃(10) ≤ 13, h̃(11) ≤ 24, h̃(12) ≤ 18, h̃(13) ≤ 31, h̃(15) ≤ 39, h̃(17) ≤ 47, h̃(19) ≤ 56,
and h̃(21) ≤ 66. Again the constructions in [3, 4] match these bounds. We remark that
the values h̃(10) and h̃(12) were previously obtained by Stöckl [16] and by Beygelzimer
and Radziszowsky [10]. The rest of the values are new.

In analogy with [5], we observe that the improved lower bounds for the number of
(≤ k)-pseudoedges do not yield the exact value of c̃r(Kn) or h̃(n) for n = 14, 16, 18, 20
or n ≥ 22. Intuitively, the odd cases are easier than the even ones because there is more
“freedom” in the definition of halving line for odd n. Namely, a halving line for odd n is
either an (n− 3) /2-edge or an (n− 1) /2-edge, whereas a halving line for even n must
be an (n− 2) /2-edge. In our setting, a theorem that bounds (≤ k)-pseudoedges is more
likely to be tight for smaller k, say for all k ≤ (n− 5) /2 (sufficient to determine h̃(n)
and c̃r(n) for odd n), than for larger k, say for all k ≤ (n− 4) /2 (sufficient for even n).

4 Proof of Theorems 2 and 3

If πi = (πi(1), . . . , πi(s), . . . , πi(t), . . . , πi(n)), and 1 ≤ a < b ≤ n, then we let πi[a, b]
denote the subpermutation (πi(a), . . . , πi(b)), and π−1

i is the permutation (πi(n), πi(n−
1), . . . , πi(1)).
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We extend the definition of Nk(Π) to any subsequence Π′ of Π: Nk(Π′) is the set of
k-transpositions of Π whose final permutation is in Π′. Clearly there is no conflict with
this definition if we regard Π as a subsequence of itself. Moreover, if Π is partitioned
into Π0,Π1, . . . ,Πr, so that Π is the concatenation Π0Π1 . . .Πr, then Nk(Π) equals the
disjoint union

⋃
iNk(Πi).

An extreme point of Π is one that occupies positions 1 or n in some πi.
If Π and Π are halfperiods (of possibly different simple allowable sequences on n

points) such that N≤k(Π) ≤ N≤k(Π) for every k = 1, . . . , bn/2c, then we write Π � Π.
In order to give a self-contained proof of Theorem 2, we include a proof of the following

result, which was proved in [7]. This is an extension to generalized configurations of
Theorem 6 in [6].

Lemma 4 Any halfperiod minimal with respect to � has exactly 3 extreme points.

Proof. Let Π = (π0, π1, . . . , π(n
2)

) be a halfperiod of a simple allowable sequence Π,
minimal with respect to �, where πi = (πi(1), πi(2), . . . , πi(n)). We note it suffices to
show that π0(1) and π0(n) swap either when π0(1) is in position 1 or when π0(n) is in
position n.

We may assume without any loss of generality (otherwise work instead with the
halfperiod (π−1

0 , π−1
1 , . . . , π−1

(n
2)

)) that in Π the element π0(1) reaches position dn/2e (say in

permutation π`) before π0(n) reaches position bn/2c+1. We claim that π0(1) swaps with
the elements π`(1), π`(2), . . . , π`(dn/2e − 1) in the given order. Seeking a contradiction,
suppose this is not the case. Let x, y be the first pair that swaps after π0(1) has swapped
(in this order) with both x and y. Note that Π may be modified, if necessary, without
losing its �-minimality, so that the swap between π0(1) and x is put on hold until y is a
neighbor of x. So we may assume that, in Π, just before π0(1) swapped with either x or
y, x and y were neighbors. If we had swapped x and y back then, and kept Π otherwise
unchanged, the result would be a halfperiod strictly �-smaller than Π, a contradiction.

By the same argument, π0(1) must swap with the elements in π`(dn/2e+ 1), π`(dn/2e
+2), . . . , π`(n) in the given order. Thus, if π0(n) = π`(n), we are done. Otherwise,
π0(n) = π`(i) for some i, dn/2e + 1 < i < n. The argument in the previous paragraph
shows that π0(n) must swap with the elements in π`(n), π`(n− 1), . . . , π`(i− 1) in the
given order. If instead of allowing π0(n) to move, we leave it in position n, so that it swaps
there with π0(1), and then let it swap with all the elements in π`(n), π`(n− 1), . . . , π`(i− 1),
the result is a halfperiod strictly �-smaller than Π, a contradiction.

If Π = (π0, . . . , π(n
2)

) is a halfperiod, and s, t are nonnegative integers such that

s ≤ t ≤
(
n
2

)
, then we let Π[s, t] denote the subsequence (πs, . . . , πt).

We now prove our version of the main ingredient for the improved bound in [5].

Proposition 5 Let Π be a halfperiod on n points. Let s, t be integers, 0 ≤ s ≤ t ≤
(
n
2

)
,

and k < n/2. Then Nk(Π[0, s]) + Nn−k(Π[s + 1, t]) + Nk(Π[t + 1,
(
n
2

)
]) ≥ 3k − n.

Proof. Let U := π0[1, k] ∩ πs[k + 1, n], and V := π0[n− k + 1, n] ∩ πs[n− k + 1, n].
Clearly, Nk(Π[0, s]) ≥ |U |, Nn−k(Π[s + 1, t]) + Nk(Π[t + 1,

(
n
2

)
]) ≥ |V |, and |V | ≥ k −

((n− 2k) + |U |). The claimed inequality follows.

Proof of Theorem 2. We proceed by induction on n. The base cases n ≤ 3 are
trivial. If k = 1 the result is also trivially true. Let n ≥ 4 and k ≥ 2. We may assume

5



Π = (π0, . . . , π(n
2)

) is �-minimal. By Lemma 4, Π has exactly 3 extreme points, say p, q,

and r. Let m :=
(
n
2

)
. By considering, if necessary, another halfperiod of the doubly-

infinite sequence generated by Π, without loss of generality q moves from position k to
position k − 1 from πm−1 to πm, while r, p are at positions 1 and n, respectively. That
is, πm−1(1) = πm(1) = r, πm−1(n) = πm(n) = p, and πm−1(k) = πm(k − 1) = q. Since
πm = (π0)−1, then π0(1) = p, π0(n) = r, and π0(n− k + 2) = q. Thus the swaps between
p, q, and r occur as follows: first q and r (at positions n − 1 and n), then p and r (at
positions 1 and 2), and finally p and q (at positions n− 1 and n).

Let πs be the permutation in which r first enters position k − 1 (that is, πs−1(k) =
πs(k − 1) = r), and let πt be the permutation in which p first enters position n−k+2 (that
is, πt−1(n− k + 1) = πt(n− k + 2) = p). Clearly, s < t. Note that πs(1) = p, πs(n) = q,
πt(1) = r, and πt(n) = q.

A transposition in Π that involves p, q, or r is a (p, q, r)-transposition.
Let Λ := λ0, λ1, . . . , λ(n−3

2 ) be the halfperiod on (n−3) obtained by removing from Π
the 3n−6 permutations that result from a (p, q, r)-transposition, and then removing p, q,
and r from each of the remaining

(
n−3

2

)
permutations. Let I denote the natural injection

from Λ to Π (thus, for instance, I(λ0) = π0), and define ι : {0, . . . ,
(
n
2

)
} → {0, . . . ,

(
n−3

2

)
}

by the condition ι(i) = j iff I(λi) = πj . Let s′ be the largest i such that ι(i) < s , and
let t′ be the largest j such that ι(j) < t.

If λi is a final permutation of a transposition inN≤k−2(Λ)∪Nk−1(Λ[0, s′])∪Nn−k−2(Λ[s′+
1, t′])∪Nk−1(Λ[t′+1,

(
n−3

2

)
]), then I(λi) is a non-(p, q, r)-transposition in N≤k(Π). There

are exactly 6k − 3 transpositions of the type (p, q, r) in N≤k(Π), and so N≤k(Π) ≥
N≤k−2(Λ) + Nk−1(Λ[0, s′]) + Nn−k−2(Λ[s′ + 1, t′]) + Nk−1(Λ[t′ + 1,

(
n−3

2

)
]) + (6k − 3).

By the induction hypothesis it follows that

N≤k−2(Λ) ≥ 3
(

k − 1
2

)
+ 3
(

k − bn/3c
2

)
− 3 max

{
0,

(
k − 1−

⌊
n

3

⌋)(
n

3
−
⌊
n

3

⌋)}
,

and by Proposition 5, Nk−1(Λ[0, s′]) + Nn−k−2(Λ[s′ + 1, t′]) + Nk−1(Λ[t′ + 1,
(
n−3

2

)
]) ≥

3(k − 1)− (n− 3) = 3k − n. Thus

N≤k(Π) ≥ 3
(

k + 1
2

)
+ 3
(

k − bn/3c
2

)
− 3 max

{
0,

(
k − 1−

⌊
n

3

⌋)(
n

3
−
⌊
n

3

⌋)}
+ max{0, 3k − n}.

If k < bn/3c+ 1 then N≤k(Π) ≥ 3
(
k+1
2

)
, otherwise k ≥ bn/3c+ 1 and

N≤k(Π) ≥ 3
(

k + 1
2

)
+ 3
(

k + 1− bn/3c
2

)
− 3

(
k −

⌊
n

3

⌋)(
n

3
−
⌊
n

3

⌋)
.

Proof of Theorem 3. Let s̃(x) = b(1/2)(1 +
√

(1 + 6x)/(1− 2x)c and

f̃(x) =
(

2− 1
s̃(x)

)
x2−

(
(s̃(x)− 1)2

s̃(x)

)
x (1− 2x)+

(
s̃(x)4 − 7s̃(x)2 + 12s̃(x)− 6

12s̃(x)

)
(1−2x)2.
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Balogh and Salazar [8] proved that Nk(Π) ≥ f̃(k/n) + O(n). Using (1) and Theorem 2
we get

c̃r(Kn) ≥ 24
(

n

4

)∫ 1/2

0
(1− 2x) max

{
f̃(x),

3
2
x2 +

3
2

max
{

0,

(
x− 1

3

)}2
}

dx + Θ(n3)

≥ 24
(

n

4

)∫ 0.4864

0
(1− 2x)

(
3
2
x2 +

3
2

max
{

0,

(
x− 1

3

)}2
)

dx

+ 24
(

n

4

)∫ 1/2

0.4864
(1− 2x)f̃(x)dx + Θ(n3) > 0.379688

(
n

4

)
+ Θ(n3).
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