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Abstract

A 3-uniform hypergraph is called tight when for any 3-coloring of its vertex set
a heterochromatic edge can be found. In the paper tightness of 3-graphs with
vertex set R? and edge sets arising from simple geometrical considerations are
studied. Basically we show that 3-graphs with “fat shadows” are tight and also
that some interesting 3-graphs with “thin shadows”™ are tight too.

1 Introduction

3.2 A k-graphis a couple G = (V, E) of its vertex set V and its edge set E. Edges are
by definition subsets of V' with cardinality £. A k-graph (7 is called tight whenever
for any map f from the vertex set onto a set of cardinality £ (the colors) there is an
edge e of G such that |f(e)| = k (e is heterochromatic). This notion was introduced
in [1] as a generalization of connectedness of graphs (graphs are 2-graphs and they
are tight if and only if they are connected).

In [1] and [2] it is studied the main question for finite 3-graphs, namely how “small”
can be a tight 3-graph. In [3| some general results about tightness of infinite k-
graphs are obtained. However this paper is the first attempt to study a concrete class
of infinite k-graphs from the point of view of their classification into tight and untight
k-graphs.

Actually, there is another motivation for this paper. When tightness for a k-graph
has to be shown, one must prove that for any “appropriate” coloring there is an
heterochromatic edge. On the other hand, it is said that an hypergraph is Ramgsey
whenever there is a monochromatic edge for any “appropriate” coloring . So, the



3-graph, with vertex set V' = {the edges of K3} and edge set /' = { the triangles
in K}, is well known to be Ramsey (coloring with two colors). Therefore Ramsey
Theory is in some sense opposite to the Theory of tight hypergraphs. One of the
must interesting branches of Ramsey Theory is the Euclidean Ramsey Theory (see
[4,5]) where theorems are proved about Ramsey properties of hypergraphs arising
from geometrical considerations in n-dimensional euclidean space. From this point
of view the results below are some first small steps of a theory that could be called
“BEuclidean Antiramsey Theory”.

Below, we study tightness of sets of triangles ( three non collinear points in R? ) in
the euclidean plane R%. From now on T will be a set of triangles and we will say that
T is tight when the 3-graph (R%,T) is tight.

For the study of finite 3-graphs is fundamental the notion of the #race of a set of
vertices (see [1]). However, we found out that for the problems treated in this paper
it is most useful to introduce the concept of shadow of a segment (two different
points in R%). Let T be a set of triangles and let AB a segment. The set ShAB) of all
points C' in R? such that ABC is a triangle in T is called the shadow of AB in T or
equivalently the T-shadow of AB. Always will be clear which is the set of triangles
T. Also, when we talk that any property holds for the shadows, it will mean that
this property holds for every segment in R?.

2 Almost tight sets of triangles

Let T be the set of all equilateral triangles in R2. By coloring red a single point with
red, coloring blue a circle with center in the red point and coloring green any other
point in R? (see fig. 1), we obtain a coloring which shows that T is not tight. In
spite of that, in this coloring a weaker interesting property holds, namely, there are
trichromatic triangles as near as required to an equilateral triangle.
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In this section we characterize through their shadows the sets of triangles for which
the above property holds for any coloring of the plane. Moreover, it turns out that
this characterization is useful to prove some shadow’s criteria for tightness in the next
section.

For a fixed coloring of the plane, a triangle ABC' is said to be almost trichromatic if
for every € > 0 there exist a trichromatic triangle # such that each of the balls with



radius £ and centers in A, B and C contains some vertex of #. A set of triangles is said
to be almost tight if for any coloring of the plane it contains an almost trichromatic
triangle.

Theorem 1 A set of triangles is almost tight if and only if it has non emply shadows.

Proof Suppose that the set of triangles T has mon empty shadows and let s consider
some green, blue, red-coloring of the plane. By a point of the type blue-green (blue-
red, green-red) we mean a limit point of blue and green (blue and red, green and
red) points. Consider P, () and R three non collinear points with different colors (it
is easy to see that they exist). Thus on the union of the segments PQ), QR and RP
there exist points of at least two different types. So, we may assume that A and B
are two points of different type (say A is blue-red and B is green-red). Let C be
a blue point (the other cases are analogous) on the shadow of A and B. Then for
any sufficiently small £ > 0 there exist a red point A, € Ball.(A) and a green point
B. € Ball.(B) , therefore the triangle A. B.C' is trichromatic and hereby the “ if part
" of the theorem is proved.

Reciprocally, let AB be a segment such that Sh(AB) is empty. Let us color A with
green, B with red and R? \ {A, B} with blue. Suppose that { € T is an almost
trichromatic triangle for this coloring. We have that {A, B} is not contained in . So,
a point (say A) in {A, B} is not in ¢ and it is easy to see that for sufficiently small &
, A is not in the e-neighborhood of any vertex of ¢. This is a contradiction. O

The elegant formulation of the preceding theorem is not suitable for its use in the
next section. Actually, we proved an stronger fact in the “if part ” of this theorem,
namely the following.

Theorem 2 Suppose the set of triangles has non empty shadows. Then there exist
points A and B such that for every C in the shadow of A and B there exist two
function Rt 3 ¢ — A, € R? and RT > ¢ — B. € R? such that the distances
between Ae and Be to A and B respectively are less than & and the triangle A. B.C
18 trichromatic. Moreover, it 1s always possible to find those functions in a way that
their images are monochromatic sets.

3 Shadow’s criteria

Unfortunately, there is a big difference between almost tight sets and tight sets.
Namely, we were not able to found the characterization of the latter by properties



of their shadows. However, in this section we show that if shadows are sufficiently
“thin” (“fat”) then the set of triangles is untight (tight).

By a shadow-closed set we mean a proper subset S of the plane with at least two
points such that the shadow of every pair of points in S is contained in S.

Theorem 3 Sets of triangles having shadow-closed sets are untight.

Proof Let S be a shadow-closed set. Since S is a proper subset of the plane we
may color it with blue and green and the rest of the plane with red. Thus every
trichromatic triangle in T must have two vertices in S and the other not in S. But
this is not posible by definition of shadow-closed set. 0

Corollary 1 Sets of triangles with numerable shadows are untight.

Proof Take a segment AR in the plane and define the following sets:

Ci=Sh(AB), Ci= |J Sh(wuw,) ., S=JC;.
=1
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Since S # R? it is shadow-closed. O

Theorem 4 Sets of triangles with open shadows are tight.

Proof Let us consider an arbitrary 3-coloring of the plane. By theorem 1 we know
that there is in the set T' an almost tricromatic triangle ABC. Since Sh(BC) is
an open set, there exist ¢’ > 0 such that Ball.(A) C Sh(BC). So, by theorem 2,
there exist A’ € Ball./(A) and B" € Ball..(B) such that A’B'C is trichromatic. Since
A" € Ball.(A) C Sh(BC), we have that the triangle A’BC is in T. As long as
Sh(A'C') is open, there exist £” > 0 such that Ball.«(B) C Sh(A'C) (see fig. 2).
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Let B" be a point in Ballynr o« (B). Again, by theorem 2 the point B” can be
chosen with the same color as B’ and therefore the triangle A’B"(C is trichromatic
and in 7. We conclude that T is tight. O



By theorem 1 every set of triangles T with non empty shadows is almost tight. This
means that there are trichromatic triangles as near as you want to a triangle in 7.
So. we can suspect that if the set of triangles has some property of “stablility” under
small movements then it will tight. We say that a set of triangles is stable whenever
for every segment AR on the plane there exist C' € Sh(AB) and £ > 0 such that
C € Sh(AgBy) for every A, € Ball. (A) and B, € Ball. (B).

The following is a general criteria for tightness.
Theorem 5 FEvery stable set of triangles is tight.

Proof Let T be a stable set set. Of course, T has no empty shadows and 7T is almost
tight. Let A and B be two points which satisfy the conditions of almost tightness.
Since T is stable then there exist C' € Sh (AB) and = > 0 such that C' € Sh (A¢By) for
every A, € Ball. (A) and B, € Ball. (B). On the other hand almost tightness states
that there exist A" € Ball. (A) and B’ € Ball. (B) such that A’B'C' is trichromatic.
Finally as C' € Sh(A’'B’) then A’B'C is a triangle in T'. Therefore T is tight. O

Recall, that a similarity is a composition of a translation a rotation and a dilation.
If T is a set of triangles such that ¢(T) = T for any similarity ¢ then we will say
that T is closed under similarities. The set of all triangles similar to a given triangle
has this property and is untight by corollary 1. However, if shadows have non empty
interior, then the set must be tight.

Theorem 6 If a set of triangles closed under similarities has shadows with non empty
interior, then it is tight.

Proof Let T be a set of triangles closed under similarities which has shadows with
non empty interior. We shall prove that T is stable. Let AB be a segment on the
plane. Since Sh(AB) has nonempty interior, then there exist C' € Sh(AB) and r > 0
such that Ball,(C) C Sh(AB). Let £ be a positive real number, A" € Ball.(A),
B' € Ball.(B) and ¢ the similarity such that ¢(A) = A’, p(B) = B’. Denote by
C" and ' the point and the number such that ¢(Ball,(C)) = Ball,.(C"). We have
lim, ,oC" = C and lim,_,or' = 7, so for a suficiently small fixed £ we obtain that
C € Ball,.(C") C Sh(A’'B') and therefore T is stable. O

We shall remark that a set of triangles having shadows with non empty interior is not
necessarily tight as can be seen from the following example. Take two open disjoint
balls in the plane. Color them with two different colors and color the rest of the plane
with a third color. Taking the set of all triangles which are not trichromatic in this
coloring we see that it is untight and the shadow of every segment has non empty
interior.



4 Sets of triangles with “thin” shadows

In preceding section we proved some theorems showing that families with sufficiently
“fat” shadows are tight. For example, the set of triagles with an angle in the interval
[0.017,0.027] is tight by theorem 6 and the set of triangles with area greater than a
given number is tight by theorem 4.

However, we can not apply those theorems in the case, say, of the set of all rectangle
triangles or in the case of all isoceles triangles. The point is that here the shadows
have empty interiors (see fig. 3).
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In this section we shall prove that several interesting, from the geometrical point of
view, sets of triangles with “thin” shadows are tight.

It is not dificult to show that the set of all rectangle triangles is tight. More attracting
is the general case when the triangles have a fixed angle. For a real number o € (0, 7)
an a-angle triangle is a triangle having one of its angles with measure «.

Theorem 7 The set of a-angle triangles is tigth for every o € (0, 7).

Proof Let us start by considering a trichromatic triangle ABC such that /BCA > o
(the existence of such triangle is granted by theorem 6). Supose A, B and C are
colored red, green and blue respectively. Let D and E denote points on the rays @
and 1@ respectively, such that /BDA = /BFEA = «. It D is to be colored blue
or green then AC'D or ABD would become a trichromatic a-triangle, thus we will
assume D is colored red, and by the same reason F is colored green. If any point X

_> i
on the DA ray is to be colored green or blue then either X DC' or X DB would be a
trl:}hromatic triangle with an angle o, thus we will suppose that every point on the
DA ray is colored red and by the same reason the whole ﬁ ray is colored green.
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Let F denote the intersection of the lines A/ and BF (notice that we may assume
AD is not parallel to BE by a suitable choice on the initial triangle). If F' happens
to be the intersection of the rays ﬁ and D—A> then we are already done, otherwise F
is such that /BF A < « (see fig. 4). By “moving” A’ and B’ on the rays lﬁl and ﬁ



in such a way that A’ B’ increases its length and remains parallel to AB we find that
the angle /B'C' A’ decreases continually, having as its limit value the angle /BF A,
but as /BFA < o and /BCA > a we may assert by the intermediate value theorem,
that there exist A* € ﬁ and B* € ﬁ such that /B*C' A* = «, thus obtaining the
desired trichromatic triangle. O

Now. we will deal with sets of isosceles triangles. First of all, let us point out that
the family of all isosceles triangles is tight; this can be easily seen by considering the
circumecenter of an arbitrary trichromatic triangle. In fact there are several subsets
of the isosceles triangles set wich are also tight. The following theorems refer to some
of them.

Lemma 1 For every r-coloring of the plane (r > 1), there always exist a different
color pair of points at a given distance apart.

Proof Let k be the given distance and A and B be points with different colors such
that the length of AR is less than k. Consider a point C' such that AC = BC =k
and note that either AC or BC' is bichromatic in spite of the C' color. O

Theorem 8 The family of isosceles triangles with a side (any of its sides) of fized
length is tight.

Proof Let k£ be an arbitrary positive number, consider an arbitrary blue, red, green
coloring of the plane. By the above lemma, let P and () be points at distance £ and
assume P is colored blue and @ is colored green. Let F' = Bally (P) N Ballay(Q).
Consider the following cases.

1.-There is a red point R on the interior of F'. Consider the circumferences Cy(R)
and Ci(P) and denote by P’ a common point of these circumferences which does not
lie on the line PQ (note that this point exist because R € int (F')). If P is colored
red or green then PP'QQ or PP'R would be a triangle as desired. therefore we will
suppose P’ is colored blue, and by the same reason, the analogue point Q) is colored
green. Finally notice that the triangle P'R(Q)' is trichromatic, isosceles and with two
sides of length k.

2.- There are no red points on the interior of F'.

Let P" and @' be points on the line P() such that P'P = QQ' = %(see fig. 7). Let
F, = Ball, (P") N Ball,(Q'). Let S = {r € R : F, contains red points} and denote
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by s the infimum of S. Let # > s be a number arbitrary close to s such that there are
red points on the F; boundary. Denote by R a red point on the boundary of F;. Take
a point X in C, (R) Nint (Fy) and note that X is not red, as there are no red points
in int (Fy). Assume witout losing generality that X is colored blue. If another point
Y in Cyx (R)Nint (Fy) is colored green then we are finished, thus we will suppose that
every point in Ci (R) Mint (Fy) is colored blue.

Now consider the locus of the perpendicular bisectors of the segments RZ where 7 is
a point describing the arc Cy (R) Nint (Fy). Note that both P and @ belong to some
of these perpendicular bisectors, because the only regions which are not covered by
the perpendicular bisectors are those shown in the figure.

Therefore there is a point 7 € Cy (R) Nint (F;) such that RZP or RZ(Q) is a trichro-
mafic triangle as desired. C

If we strength the conditions and ask for the family of isosceles triangles with both
equal sides of fixed length then the result is false, this happens because the shadow
of every sufficiently large segment is empty; the same holds for the family of isosceles
triangles with the “different” side of fixed length, this time by considering the shadow
of a sufficiently short segment.

The set of (o & )-isosceles triangles will denote the set of all isosceles triangles such
that the angle between the two equal sides belongs to the open interval (o — &, + ¢)

Theorem 9 If a = 120° or 90° then the set of (o + €)-isosceles triangles is tight.

Proof Let a = 120° and £ > 0. since the set of all equilateral triangles is almost
tight then there exists a trichromatic triangle ABC such that

| o

LCAB —60°| . |/BCA —60°|, [LABC — 60°| < o

Consider the circumecenter D of ABC and note that

/CDB _ /ADC _ /BDA _

(CAB [ABC /BCA 2

i.e.
|/CDB —120°|,|/BDA — 120°| , |LADC — 120°| < ¢
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therefore, independently of the D color, any of the triangles CDB, ADC or BDA
would be trichromatic and with the desired properties.

Now for the second part. Let a = 90° and £ > 0, since the set of all isosceles rectangle
triangles is almost tight then there exist A, B and C' colored green, blue and red such
that

LCAB — 45°|.|LABC — 45°| ., |[LBCA — 90°| , < %

Consider the circumcenter D of ABC and note that

/CDB _ /ADC _ /BDA _

(CAB /ABC [/BCA =2

i.e.

LCDB —90°|, |/ ADC — 90°| , |/ BDA — 180°|, < =

If D is colored green or blue then either BC'D or ADC would be a trichromatic
triangle as required, thus we will suppose D is colored red. Let F denote a point on
the bisector of /BDA such that DE = CD (see fig. 5), observe that

[EDA=/BDE = %ZBDA =/BCA
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If F is colored green or blue then either BDFE or DAF is an isosceles trichromatic
triangle with an almost 90° angle. If, on the contrary, F is colored red then it is
easy to observe that the trichromatic triangle BAF is isosceles. Besides /BAFE =
180° — /BC'A (the points A, E, B and C' lie on the circle with center D), therefore

/BAE — 90°| = [90° — /BCA| < g

and thus the triangle BAFE meets the requirements. O

The k-ratio set of triangles will denote all the triangles with a given ratio £ between
the lengths of two of their sides (the 1-ratio set is the set of isosceles triangles).

The following result is an application of the above theorem.



Theorem 10 If k € (\/5 -1, 1} then the k-ratio set is tight.

Proof Let k € <\/§ -1, 1]. Consider an isosceles almost 90° trichromatic triangle

ABC (A,B and C colored green, blue and red) with /BCA ~ 90° and assume
CA=CB=1.

Let Cy (C) denote the circle with center C' and radius k. Let X be a point on Cj (C)
and not on the lines BC and AC, if X is colored blue or green then any of CAX
or CBX is a trichromatic triangle with the required ratio between two of its sides.
Thus, we will suppose every point on Cy (C) (except perhaps four points) is colored
red.

Now consider the circle Cy.45 (B), note that AB ~ /2 and consequently

E>+v2—-1=
k+k-AB~k++2k>1= BC

i.e. the circles Cy (C) and Cy. 45 (B) intersect each other in a point D, which allow us

to affirm that the triangle AB D is trichromatic and with the given relation % = k.
U

We will say that a triangle is steady if one of its sides is equal to its corresponding
altitude.

Theorem 11 The set of steady triangles is tight.

Proof Let us consider an isosceles trichromatic triangle ABC with unequal side AB,
say A green, B blue and C red. Let D be the midpoint of AB. Consider the following
cases.

Case 1. D is colored red.

Let us consider the rectangle ABP() with PQ = ATB. Since P and () are in

Sh(A, D)NSh(D, B) then we may suppose they are colored red (otherwise we would
have finished). Notice that Sh(B,P) N Sh(Q, A) N Sh(A, B) # () and so, no matter

what the color of a point in this intersection is, we are already done.
Case 2. D is not colored green (assume D is colored green).

In this case we will just consider the region determined by the rays DB and DC'.
Consider the points F = Sh(A,B) N Sh(D,C) and F = Sh(A,C) N Sh(D,C). We
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may suppose F is colored green and F is colored red (otherwise we would have
finished). But the trichromatic triangle FF A is also steady, therefore the set of
steady triangles is tight. 0
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