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Abstract

Let P be a set of n points in the plane. A geometric proximity graph on P is a graph where
two points are connected by a straight-line segment if they satisfy some prescribed proximity
rule. We consider four classes of higher order proximity graphs, namely, the k-nearest neighbor
graph, the k-relative neighborhood graph, the k-Gabriel graph and the k-Delaunay graph. For
k = 0 (k = 1 in the case of the k-nearest neighbor graph) these graphs are plane, but for higher
values of k in general they contain crossings. In this paper we provide lower and upper bounds
on their minimum and maximum number of crossings. We give general bounds and we also
study particular cases that are especially interesting from the viewpoint of applications. These
cases include the 1-Delaunay graph and the k-nearest neighbor graph for small values of k.

Keywords Proximity graphs; geometric graphs; crossing number.

1 Introduction and basic notation

A geometric graph on a point set P is a pair G = (P,E) in which the vertex set P is assumed to be
in general position, i.e., no three points are collinear, and the set E of edges consists of straight-line
segments with endpoints in P . Notice that the focus is more on the drawing rather than on the
underlying graph, as carefully pointed out by Brass, Moser and Pach in their survey book ([6], page
373).

A proximity graph is a graph G = (V,E) in which the nodes represent geometric objects in a
given set, typically points, and two nodes are adjacent when the corresponding objects are consid-
ered to be neighbors according to some specific proximity criterion. A geometric proximity graph
is a geometric graph in which the adjacency is decided by some neighborhood rule; they are also
sometimes called proximity drawings [18]. Examples of these graphs are the k-nearest neighbor
graph, k-NNG(P ), in which every point is joined with a directed segment to its k closest neighbors,
and the k-Delaunay graph, k-DG(P ), in which pi and pj are connected with a segment if there is
some circle through pi and pj that contains at most k points from P in its interior. Other similar
definitions are given later in this paper.

Proximity graphs have been widely used in applications in which extracting shape or structure
from a point set is a required tool or even the main goal, as is the case of computer vision, pattern
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recognition, visual perception, geographic information systems, instance-based learning, and data
mining [13, 19, 26]. In the area of graph drawing [5, 12, 14] the main goal is to realize —or to
draw— a given combinatorial graph as a geometric proximity graph, which leads to problems on
characterizing the graphs that admit such a representation and designing efficient algorithms to
construct the drawing whenever possible (see the survey [18] in this respect).

Usually graphs are drawn in the plane with points as nodes and Jordan arcs as edges. When
two edges share an interior point, we say that there is a crossing. Both as a natural aesthetic
measure for graph drawing and as a fundamental issue in the mathematical context, the number of
crossings is a parameter that has been attracting extensive study. Given a graph G, the crossing
number of G, denoted by cr(G), is the minimum number of edge crossings in any drawing of G; if
this number is 0, we say that the graph is planar. The rectilinear crossing number of G, denoted by
cr(G), is the smallest number of crossings in any drawing of G in which the edges are represented
by straight-line segments.

Computing the crossing number of a graph is an NP-hard problem [9], and both the generic and
rectilinear crossing numbers of very fundamental graphs, such as the complete graph Kn and the
complete bipartite graph Km,n are still unknown [29, 11]. These problems have been attracting a
great amount of attention and recently a continuous chain of improvements has led progressively
to narrow the gap between the lower and upper bounds [15, 3, 2]. There are also several results
on the numbers of crossings that are sensitive to the size of the graph —particulary the crossing
lemma [4, 17, 6]—, or to the exclusion of some configurations [6, 20, 22, 28, 8].

In this paper we study the crossing numbers of several higher order geometric proximity graphs
related to Delaunay graphs. If P is a set of points in the plane, each of the proximity graphs we
consider is a geometric graph on P that has some number of crossings that will be denoted by £ ( ),
and we investigate how this number varies when all possible point sets P in general position, with
|P | = n, are considered. The generic conclusion that may be derived from our research is that this
family of graphs has a relatively small number of crossings.

The fact that this specific issue has not been investigated previously is somehow surprising. As
an explanation, one may first consider that 0-order proximity graphs, which have attracted most of
the research and are better understood, are planar. On the other hand, regarding the applications in
shape analysis, the data are what they are, and the user would not have the possibility of moving
the points around to decrease the number of crossings. It is worth mentioning here that, while
higher order proximity graphs were introduced and studied about twenty years ago [24, 25], there
has been a renewal of interest on them, especially for low orders, as they offer a flexibility which
is desirable in several applications. For example, the Delaunay triangulation (DT) is unique, while
one can extract a large number of different triangulations from the 1-Delaunay graph, all of them
“close” to DT, which may be preferable under some criterion (see for example the papers [16, 1]
and the numerous references there).

From the viewpoint of proximity drawings, it is desirable to have a small number of crossings,
and hence we study its minimum value. On the other hand, we also consider the shape analysis
situation in which choosing the points is not possible, which leads to study how large the number
of crossings can be, i.e., its maximum value.

For example, consider the k-nearest neighbor graph of point sets P with |P | = n. We introduce
and study the rectilinear crossing number and the worst crossing number defined respectively as

cr(k-NNG(n)) = min
|P |=n

£ (k-NNG(P )),

wcr(k-NNG(n)) = max
|P |=n

£ (k-NNG(P )).

We define analogous parameters for the k-relative neighborhood graph, k-RNG(P ), in which
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pi, pj are adjacent if the open intersection of the circles centered at pi and pj with radius |pipj |
contains at most k points from P ; the k-Gabriel graph, k-GG(P ), in which pi and pj are adjacent
if the closed circle with diameter pipj contains at most k points from P different from pi, pj ; and
the k-Delaunay graph, k-DG(P ). It is well known that

(k + 1)-NNG(P) ⊆ k-RNG(P ) ⊆ k-GG(P ) ⊆ k-DG(P ). (1)

Notice that, when the rectilinear crossing number of a combinatorial graph is considered, we
draw the same graph on top of different points sets, while here we study a specific kind of proximity
graph on top of different point sets, but the underlying combinatorial graphs may be different for
many of these sets. Another somehow subtle issue that deserves a specific comment is the fact that
the combinatorial graph obtained from a proximity drawing may have a smaller crossing number
than the rectilinear crossing number of its proximity drawing. This is clearer with an example: We
prove in this paper that cr(1-DG(n)) = n − 4; this means that 1-DG(P ) contains at least n − 4
crossings for any set P of n points, and that for some point set Q this number is achieved. The
graph on Figure 1 (left) is the 1-Delaunay graph of its vertex set (the six shown points) and has 2
crossings; however, the combinatorial graph can be drawn on top of a different set and have only
one crossing (Figure 1, right). Obviously the latter is not the 1-Delaunay graph of its vertex set.

b b′

d f ′c

f

d′ c′

e e′

a a′

Figure 1: The graph on the left is a 1-Delaunay graph; black edges belong to 0-DG. The graph on
the right is isomorphic.

A substantial part of our research focus on the 1-Delaunay graph and on the graphs k-NNG(P )
with small k, widely used in classification scenarios, as these are the most interesting situations
from the viewpoint of applications [1, 7, 10, 16]. We present these results in Subsections 2.1 and 2.2.
In Subsection 2.3 we look at the number of crossings for large values of k. Throughout the paper
we assume that point sets P are in general position in an extended sense meaning: no three points
are collinear, no four points are concyclic and, for each p ∈ P, the set of its k nearest points in P
is well-defined, i.e., has cardinality k, for any k ≥ 1.

Throughout the paper we denote by V (G) (respectively, E(G)) the set of vertices (respectively,
edges) of a given graph G, and by v(G) (respectively, e(G)) the cardinality of this set. If v is a
vertex in V (G), we denote by dG(v) the degree of v in G. We consider a generic set P of n points
in general position, and we denote by h the size of the convex hull of P .

2 Results

Given the number of results in the paper and the length of some proofs, in this section we only
state our bounds deferring the proofs to the subsequent section.
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2.1 1-Delaunay graphs

In this subsection we carry out a detailed analysis of the number of crossings in a 1-Delaunay graph.
We study the general case and also the particular case where all points are in convex position. Our
contributions are presented in Table 1. Note that we establish the exact value of the rectilinear
crossing number of the 1-Delaunay graph for both the general case and the convex case.

general case convex case

cr n− 4 6n− 3bn
2 c − 19

wcr n2 + Θ(n) ≤wcr≤ 4n2 + Θ(n) n2

2 + Θ(n) ≤wcr≤ 7n2

8 + Θ(n)

Table 1: 1-Delaunay graphs.

As shown in [1], the number of elements in E(1-DG(P ))−E(0-DG(P )) is linear. Since 0-DG(P )
is maximal planar, this immediately yields that every 1-Delaunay graph contains a linear number
of crossings. More accurate observations lead to the following bound:

Theorem 2.1.1. For every point set P, £ (1-DG(P )) ≥ n− 4.

Proposition 2.1.2. There exists a point set Q such that £ (1-DG(Q)) = n− 4.

If P is in convex position, the bounds can be strengthened:

Theorem 2.1.3. For every set P in convex position, £ (1-DG(P )) ≥ 6n− 3bn
2 c − 19.

Proposition 2.1.4. There exists a point set Q in convex position such that £ (1-DG(Q)) = 6n −
3bn

2 c − 19.

In principle, every pair of edges in E(1-DG(P )) − E(0-DG(P )) might cross, so the number of
crossings in 1-DG(P ) could be quadratic. In the following lines we provide quadratic upper bounds
on the number of crossings of 1-DG(P ), and show that in some cases this parameter is indeed
quadratic.

Theorem 2.1.5. For every set of points P, £ (1-DG(P )) ≤ 4n2 + Θ(n).

Proposition 2.1.6. There exists a point set Q such that £ (1-DG(Q)) = n2 + Θ(n).

For the convex case we prove tighter bounds:

Theorem 2.1.7. For every set of points P in convex position, £ (1-DG(P )) ≤ 7n2/8 + Θ(n).

Proposition 2.1.8. There exists a set of points Q in convex position such that £ (1-DG(Q)) =
n2/2 + Θ(n).

2.2 k-nearest neighbor graphs for small values of k

We provide bounds on the rectilinear crossing number of the k-nearest neighbor graph k-NNG for
k ≤ 10. Due to the inclusion relations satisfied by the graphs we investigate, the lower bounds also
hold for the rectilinear crossing number of the other proximity graphs if we shift the value of k one
unit down (see (1)).

Our results are summarized in Table 2. It is interesting noticing that, even though the lower
bounds do not rely on specific properties of k-NNG but on generic results, for many values of k we
are able to construct point sets attaining these bounds.
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Theorem 2.2.1. The rectilinear crossing number of k-NNG, when k ∈ {1, 2, . . . , 10}, satisfies the
equalities and inequalities shown in Table 2.

k cr(k-NNG(n))

1 0

2 0

3 0

4 0, for n ≥ 14

5 0, for n ≥ 44

6 ≤ 58, for n ≥ 39

7 n/2 + Θ(1)

8 n + Θ(1)

9 13n/6 + 50/3 ≤ cr≤ 31n/13 + Θ(1)

10 10n/3 + 50/3 ≤ cr≤ 4n + Θ(1)

Table 2: cr(k-NNG(n)) for the first values of k.

As for the worst crossing number, we will give bounds for all k in Subsection 2.3, and we can
improve on these only minimally for small k. Thus we omit those details.

2.3 General bounds

In this subsection we are interested in the number of crossings in the graphs under study when the
value of k is large. We have derived bounds for both the rectilinear crossing number and the worst
crossing number of all graphs (see Table 3). Observe that in all cases we can specify the exact order
of magnitude of these parameters up to multiplicative constants.

k-NNG(n) k-RNG(n) k-GG(n) k-DG(n)

cr ≥ 128
31827k3n 128

31827k3n 128
31827k3n 1024

31827k3n

cr≤ 1
9π2 k3n π

9(2π/3−√3/2)3
k3n 64

9π2 k3n 64
9π2 k3n

wcr≥ 1
3k3n 1

3k3n 1
4k2n2 1

2k2n2

wcr≤ k3n 9k3n 3k2n2 3k2n2

Table 3: Dominant terms of the general bounds. Some of the bounds only hold for “intermediate”
values of k. We refer to the precise statements in the rest of the subsection.

2.3.1 Rectilinear crossing number

Our lower bounds for the rectilinear crossing numbers follow from an improved version of the
crossing lemma given in [21].

Theorem 2.3.1. If k ≥ 13, then
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i) cr(k-NNG(n)) ≥ 128
31827k3n,

ii) cr(k-RNG(n)) ≥ 128
31827k3n,

iii) cr(k-GG(n)) ≥ 128
31827k3n.

If 6 ≤ k < n
2 − 1, then

iv) cr(k-DG(n)) ≥ 1024
31827k3n.

As already observed in [1], if k ≥ n
2 − 1, then k-DG(P ) is the complete graph.

For the upper bounds we use a suitable construction proposed in [23]. This construction is the
current asymptotically best example of a graph with fixed number of edges and minimum number
of crossings. In the next proposition we show that it can be seen as a proximity graph.

Proposition 2.3.2. If ω(1) ≤ k ≤ o(n), there exists a point set Q such that

i) £ (k-NNG(Q)) ≤ 1
9π2 k3n(1 + o(1)),

ii) £ (k-RNG(Q)) ≤ π
9(2π/3−√3/2)3

k3n(1 + o(1)),

iii) £ (k-GG(Q)) ≤ 64
9π2 k3n(1 + o(1)),

iv) £ (k-DG(Q)) ≤ 64
9π2 k3n(1 + o(1)).

2.3.2 Worst crossing number

Any upper bound on the number of edges of some higher order proximity graph can be used to
produce an upper bound on its worst crossing number. For k-Delaunay graphs, it has been proved
that the number of edges is at most 3(k + 1)n− 3(k + 1)(k + 2) [1]. In the worst scenario, all pairs
of edges might cross, so the number of crossings is no more than 9

2k2n2 + o(k2n2). In the following
theorem we improve this bound:

Theorem 2.3.3. For every point set P, if k < n/2 − 1, then £ (k-GG(P )) ≤ £ (k-DG(P )) ≤
(3k2 + 6k + 3)n2 + (−6k3 − 21k2 − 51

2 k − 21
2 )n + (3k4 + 15k3 + 57

2 k2 + 51
2 k + 9).

The preceding bounds are tight up to a multiplicative constant:

Proposition 2.3.4. If k = o(n), there exists a point set Q such that £ (k-GG(Q)) = k2n2/4 +
o(k2n2).

Proposition 2.3.5. If k = o(n), there exists a point set Q such that £ (k-DG(Q)) = k2n2/2 +
o(k2n2).

For k-relative neighborhood graphs, it can be shown that the number of edges is bounded from
above by 3kn + 3n (see Appendix), which yields an upper bound of 9k2n2 + o(k2n2) for the worst
crossing number. We have proved that the order of magnitude of this parameter is lower provided
that k = o(n):

Theorem 2.3.6. For every point set P, £ (k-RNG(P )) ≤ (9k2 + 18k + 9)kn.

Finally, the number of edges of k-NNG is no greater than kn. In this case Theorem 2.3.7 and
Proposition 2.3.8 show that the worst crossing number is also cubic in k and linear in n:

Theorem 2.3.7. For every point set P, £ (k-NNG(P )) ≤ (2k2 − 3k + 1)kn/2.

Proposition 2.3.8. If k = o(n), there exists a point set Q such that £ (k-RNG(Q)) ≥ £ (k-NNG(Q)) =
k3n/3 + o(k3n).
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3 Proofs

3.1 Proofs of the results in Subsection 2.1

Let us introduce some notation. We partition the edges of the 1-Delaunay graph into two groups:
we say that an edge is blue if it also appears in 0-DG(P ) and we say that it is red otherwise. We
set eb = e (0-DG(P )) and er = e (1-DG(P )) − e (0-DG(P )). Note that a red edge pipj corresponds
to an element in E(0-DG(P r {pl})) for some pl ∈ P. We say that pipj is generated by pl. Observe
that the fact that pipj is generated by pl is equivalent to the existence of a disk through pi and
pj containing pl and no other point in P , which implies that pipl and pjpl belong to E(0-DG(P )).
Thus pipj is generated by at most two points. (See [1].)

In the figures of this subsection the blue edges will be represented in black and the red edges
will be represented in gray.

3.1.1 Proof of Theorem 2.1.1

Since the graph 0-DG(P ) is maximal planar, each red edge induces at least one crossing in 1-DG(P ).
We prove that the number of red edges in 1-DG(P ) is at least n − 4 (see Theorem 3.1.5). Part of
our proof follows the lines of previous techniques used in [1].

Let us introduce some notation. Let H and I be the convex and interior points of P. For
convenience, sets are denoted with a capital letter and their cardinalities with the corresponding
lower case letter (thus h and i denote the cardinality of H and I respectively).

For a point p ∈ P , let dG(p) denote the degree of p in G, where G = 0-DG(P ), and let d∗(p) be
the value 2 plus the number of points of I that are in the convex hull of P r {p}.

Our proof requires several remarks, already stated in [1]:

Lemma 3.1.1. The set of red edges generated by exactly two points induces a perfect matching on
the triangles of 0-DG(P ). Moreover, two so matched triangles are adjacent triangles of 0-DG(P ) in
convex position.

Lemma 3.1.2. The number of red edges generated by an element p ∈ P is:

• dG(p)− d∗(p), if p ∈ H;

• dG(p)− 3, if p ∈ I.

Lemma 3.1.3. If pl ∈ I is in the convex hull of both P r {pi} and P r {pj}, for some pair of
points pi, pj ∈ H, then pi and pj are consecutive vertices in the convex hull of P . Furthermore, the
triangle 4pipjpl is empty, and the line through pi and pl separates 4pipjpl from the rest of P , as
does the line through pj and pl.

Lemma 3.1.4. Each element of I can contribute to d∗(pi) and d∗(pj) for at most two points
pi, pj ∈ H, provided that n ≥ 5.

By Lemma 3.1.4, we may partition I into I0 ∪ I1 ∪ I2, where Ij is the set of elements of I that
contribute to d∗ for exactly j points.

Notice that, if pl ∈ I2 contributes to d∗ for pi and pj , then, by Lemma 3.1.3, the points pi, pj ,
and pl together with any other point of P are not in convex position. Hence 4pipjpl is a triangle
of 0-DG(P ) that does not participate in the matching given by Lemma 3.1.1. Such a triangle is
called special triangle.
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We wish to bound the number of red edges in 1-DG(P ). By Lemma 3.1.2,

er =
∑

p∈H

(dG(p)− d∗(p)) +
∑

p∈I

(dG(p)− 3)− ξ =

= 4n− 6− (i +
∑

p∈H

d∗(p))− ξ, (2)

where is ξ the number of times a red edge is overcounted in the summation (which happens
when two points induce the same edge). Since the set of red edges generated by the removal of two
points induces a matching in the triangles of 0-DG(P ), we may now introduce a new equation:

ξ =
4− i2 −m

2
, (3)

where 4 is the number of triangles in 0-DG(P ) (thus 4 = h + 2i− 2), and m is the number of
non-special triangles in 0-DG(P ) not matched by a red edge generated by two points.

Substituting (3) in (2) and using that
∑

p∈H d∗(p) = 2h + i1 + 2i2, we obtain that

er = n− 5 + i0 +
1
2

(h− i2 + m) .

Since i0 ≥ 0, h− i2 ≥ 0, and m ≥ 0, we have that er ≥ n− 5, and er = n− 5 if and only if:

i0 = 0, h = i2, and m = 0. (4)

We make some observations about the structure of P in the case where (4) is satisfied and
introduce some useful notation.

Note that any point that contributes to d∗ for some other point of H is in the second convex
layer of P . Therefore if we assume that i0 = 0, then P has exactly two convex layers, and the
second one is given by the set I = I2 ∪ I1. We say that each point pl ∈ I2 is associated to two
points of H: those points for whom q contributes to d∗. Similarly, each point pl ∈ I1 is associated
to the point pi ∈ H for which pl contributes to d∗(pi).

With these last observations we are ready to prove a lower bound on the number of red edges.

Theorem 3.1.5. The graph 1-DG(P ) contains at least n− 4 red edges.

Proof. Suppose by means of a contradiction that er = n− 5 and thus (4) holds.

We distinguish two cases.

First we assume that every edge of the convex hull of I is an edge of 0-DG(P ). In this case
every triangle having exactly one point of H as a vertex is entirely contained between the first
and second convex layers of P ; see Figure 2 (left). No two of these triangles are matched, because
the four vertices of two such adjacent triangles are not in convex position. As m = 0 and the
special triangles cannot be matched, we infer that every triangle having exactly one point of H as
a vertex is matched with one triangle contained in the second convex layer of P . However, there
are i triangles of the first type and i − 2 triangles of the second type. Thus i0 = 0, h = i2, and
m = 0 cannot simultaneously hold in this case.

8



pi

pm

pj

pl

Figure 2: Part of the Delaunay triangulations of the point sets. Interior points are in gray. In the
right figure, every edge of the convex hull of I is an edge of 0-DG(P ). In the left figure, pipl is a
diagonal such that G1(pipl) contains no diagonal of 0-DG(P ).

Now let us suppose that there exists an edge e of the convex hull of I that is not an edge of
0-DG(P ). Then there is an edge pipl in 0-DG(P ) crossing e such that pi is a point of H and pl is
not associated with pi. We call such an edge pipl a diagonal.

For each diagonal pipl, if pl ∈ H, let pol(pipl) be the edge pipl; otherwise, let pol(pipl) be the
polygonal chain piplpj , where pj is a point of H with whom pl is associated. In both cases pol(pipl)
is a polygonal chain joining two vertices of H. If we take the two sub-polygonal chains of the convex
hull of P joining the endpoints of pol(pipl) together with pol(pipl), we define two closed polygonal
chains that are the boundary of two bounded regions C1(pipl) and C2(pipl).

The regions C1(pipl) and C2(pipl) define two non-empty subsets P1(pipl) and P2(pipl), the points
of P that lie at the interior or at the boundary of C1(pipl) and C2(pipl), respectively. Without loss
of generality, assume that P1(pipl) is the smallest of the two sets. Let G1(pipl) and G2(pipl) be the
subgraphs of 0-DG(P ) induced by P1(pipl) and P2(pipl).

Let pipl be a diagonal in 0-DG(P ) such that G1(pipl) contains no diagonal of 0-DG(P ). Observe
that pl is a point of I. Among all points of H with whom pl is associated, let pj be the one that
yields the smallest possible value for |P1(pipl)|. Now let I ′ := I ∩ P1(pipl) and H ′ := H ∩ P1(pipl).

The intersection of the convex hulls of I and I ′ is a convex polygonal chain Q2 that has I ′ as
its vertex set and pl as an endpoint. Since the only diagonal of 0-DG(P ) in G1(pipl) is pipl, Q2 is a
subgraph of G1(pipl) (see Figure 2, right). Let pm denote the endpoint of Q2 different from pl. The
edge pipl is a side of some triangle of G1(pipl); since there are no diagonals of 0-DG(P ) in G1(pipl)
except for pipl, the third vertex of this triangle is pm. Thus G1(pipl) contains a triangulation of I ′

as subgraph.

Let Th be the set of triangles of G1(pipl) consisting of an edge of Q2 and a point in H ′, and
Ti be the set of triangles of G1(pipl) with all their vertices in I ′. It is not difficult to see that any
triangle in Th that participates in the matching is matched with a triangle in Ti. Since |Th| = i′−1
and |Ti| = i′ − 2, we conclude that m is greater than zero also in this case.

3.1.2 Proof of Proposition 2.1.2

We start with n − 2 points in a vertical segment, denoted from top to bottom by q1, q2, . . . , qn−2.
We add one point to the left of this group, and one point to the right, as in Figure 3 (left). Then
we slightly move the even points q2, q4, . . . to the right, and the odd points q3, q5, . . . to the left.

The only red edges in 1-DG(Q) are qiqi+2, for i = 1, 2, . . . , n− 4. No pair of such edges crosses,
and each of them creates exactly one crossing with 0-DG(Q). Thus the number of crossings of
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1-DG(Q) is n− 4.

3.1.3 Proof of Theorem 2.1.3

Let p1, . . . , pn denote the points in P in clockwise order. Note that all edges of type pipi+2 are in
1-DG(P ), and that the total number of crossings between two edges of this family is n. Let G′ be
the graph obtained from 1-DG(P ) by removing these edges and the ones in the convex hull of P.
Since er ≥ 2n − bn

2 c − 5 (see [1]), G′ contains at least 2n − bn
2 c − 8 edges. Each of them induces

two crossings with the edges that have been removed.

Let G′p be a maximal planar subgraph of G′. It is easy to see that G′p contains at most n − 5
edges. Thus there are at least n−bn

2 c− 3 edges in G′ but not in G′p, each of which induces at least
one crossing with an edge of G′p.

Adding everything up, the graph 1-DG(P ) has no less than 6n− 3bn
2 c − 19 crossings.

3.1.4 Proof of Proposition 2.1.4

Consider two horizontal lines such that each point in one line has a counterpart in the other line
with the same abscissa. Add one point to the left of both lines such that its ordinate is the average
of the ordinates of the lines. If the positions of the points are carefully chosen, it is possible to
perturb them so that the point set is in convex position and 1-DG(Q) contains only the edges drawn
in Figure 3 (middle). Easy calculations show that, in this case, the number of crossings of the graph
is 6n− 3bn

2 c − 19.

Figure 3: Left: point set whose 1-Delaunay graph has n− 4 crossings. Middle: point set in convex
position whose 1-Delaunay graph has 6n− 3bn

2 c− 19 crossings. Right: point set in convex position
whose 1-Delaunay graph has n2/2 + Θ(n) crossings.

3.1.5 Proof of Theorem 2.1.5

Theorem 2.3.3 says that at most 12n2 − 63n + 81 crossings are present in 1-DG(P ). In this proof
we improve the dominant term of this bound to 4n2.

A crossing in 1-DG(P ) is caused either by a red edge and a blue one or by a pair of red edges. We
denote the cardinal number of the first and second sets of crossings by r⊗ b and r⊗ r, respectively.
We derive upper bounds for r ⊗ b and r ⊗ r.

The bound for r ⊗ b is given in Lemma 3.1.9 and requires several technical lemmas and obser-
vations:
Observation 3.1.6. Let pipj , plpm be two crossing edges. Either every circle through pi, pj contains
pl or pm, or every circle through pl, pm contains pi or pj .

10



Lemma 3.1.7. If u, v, w are three vertices of a planar graph G on n vertices, then dG(u)+dG(v)+
dG(w) ≤ 2n + 2.

Proof. Let V ′(G) be the set of vertices in V (G) \ {u, v, w} that are adjacent to u, v and w. Then
dG(u) + dG(v) + dG(w) ≤ 3|V ′(G)|+ 2(n− 3− |V ′(G)|) + 6 = 2n + |V ′(G)|. Since the graph K3,3

is not planar, we have that |V ′(G)| ≤ 2.

Lemma 3.1.8. Let G be a graph on n vertices. If G is a plane triangulation, then
∑

v∈V (G) d2
G(v) ≤

2n2 + 33n.

Proof. We prove the lemma by induction on the order of the graph. The small cases are trivial.
We next proceed to the inductive step.

Let us first assume that there exists a vertex v′ not in the external face having degree three,
four or five. Let G′ be a graph containing all the edges in G r v′ and where the face bounded by
the neighbors of v′ in G has been triangulated. Let w1, w2, . . . , wI be the vertices in V (G) such
that dG′(wi) = dG(wi)− 1. Note that: if dG(v′) = 3, then I = 3; if dG(v′) = 4, then I = 2; and, if
dG(v′) = 5, then I = 2. For any v ∈ V (G), v 6= v, w1, . . . , wI , we have that dG(v) ≤ dG′(v). Then

∑

v∈V (G)

d2
G(v) =

∑

v 6=v′,wi

d2
G(v) + d2

G(v′) +
∑

i=1,...,I

d2
G(wi) ≤

≤
∑

v 6=v′
d2

G′(v) + 2
∑

i=1,...,I

dG′(wi) + d2
G(v′) + I ≤

≤
∑

v 6=v′
d2

G′(v) + 2
∑

i=1,...,I

dG′(wi) + 27.

By the induction hypothesis and Lemma 3.1.7,

∑

v∈V (G)

d2
G(v) ≤ 2(n− 1)2 + 33(n− 1) + 2(2n + 2) + 27 = 2n2 + 33n.

Now suppose that all the interior vertices have degree at least six (or there are no interior
vertices). Let H be the set of vertices in the external face and let h = |H|. By the handshaking
lemma,

∑
v∈H d(v) ≤ 4h− 6. Consequently, there exists a vertex in the external face having degree

three or two, and the same strategy can be used to prove the inequality.

Lemma 3.1.9. For every set of points P, r ⊗ b ≤ n2 + Θ(n).

Proof. If there is a crossing between a red edge r and a blue edge b = pipj , then, by Observa-
tion 3.1.6, r is generated by pi or pj (or both). We assign the crossing to this point (or to any of
them if r is generated by both).

Next we bound the number of crossings that may be assigned to some point p ∈ P.

First assume that p is not in the convex hull of P. Let ek = pqk be a blue edge incident to
p; we want to know how many edges in 0-DG(P r {p}) it may cross. Consider the triangulation
T constituted by the cycle connecting the neighbors of p in 0-DG(P ) and the edges generated by
p (see Figure 4, left). Let Tp be the triangle containing p and Tqk

be the triangle incident to qk

that is traversed by ek (Tqk
= Tp if qk is a vertex of Tp). Observe that the number of edges in

0-DG(P r {p}) that ek crosses correspond to the distance between Tqk
and Tp in the dual graph

11



of T . Observe also that, if qk and ql are two different vertices that are adjacent to p in 0-DG(P )
and are not vertices of Tp, we have that Tqk

6= Tql
. Then it is easy to see that the configuration

of the dual graph maximizing the sum of distances between Tqk
and Tp, for all qk neighbor of p in

0-DG(P ) (and not vertex of Tp), is a tree rooted at Tp. Consequently, at most
∑dG(p)−3

ν=1 ν crossings
(where G = 0-DG(P )) are assigned to p.

Next suppose that p is a vertex of the convex hull of P . Let q1, q2, . . . , qdG(p) be the neighbors of
p in 0-DG(P ) in radial order around p (G = 0-DG(P )). Let qτ be the first point that belongs to the
convex hull of P r {p} but does not belong to the convex hull of P (if there is not such qτ , we set
qτ = qdG(p)). Let us look at the triangulation of the polygon pq1q2 . . . qτp given by the red edges.
In order to determine the number of edges in 0-DG(P r{p}) that an edge pqk (k ∈ {2, 3, . . . , τ −1})
crosses we can use the same argument as before, except that in this case Tp is defined as the triangle
having p as a vertex. Next we can look at the next point that belongs to the convex hull of P r{p}
but does not belong to the convex hull of P (let us denote it by qι) and apply the same argument
to the edges of the polygon pqτqτ+1 . . . qιp. We proceed in this way until we reach qdG(p). Then it
is not difficult to see that the number of crossing that may be assigned to p is less than or equal to∑dG(p)−2

ν=1 ν.

Now the result follows from Lemma 3.1.8.

p

p

qk

q1

q2

qd(p)

qτ

Figure 4: Crossings assigned to p. In the right figure, p is an interior point of P ; in the left
figure, it belongs to the convex hull of P . The dashed edges correspond to the dual graphs of the
triangulations given by the red edges.

Next we give an upper bound for r ⊗ r, which, combined with the bound just seen, completes
the proof of Theorem 2.1.5.

Lemma 3.1.10. For every set of points P, r ⊗ r ≤ 3n2 + Θ(n).

Proof. Let the red crossing graph be the graph whose vertices are the red edges of 1-DG(P ) and
where two vertices are adjacent if their corresponding edges cross. First we will prove that er ≤
3n− h− 6, that is, that the red crossing graph has no more than 3n− h− 6 vertices. Afterwards
we will see that every red crossing graph has no 4-clique. Then we can apply Turán’s theorem [27],
which states that any Kr+1-free graph on m vertices has at most (1− 1

r )m2

2 edges. This yields the
result.

First we bound the number of vertices of the red crossing graph.

Let H be the set of points in the convex hull of P , I be the set of interior points of P , and
Ij (j ∈ {0, 1, 2}) be the set of interior points of P appearing in the convex hull of P r {p} for j
distinct points p ∈ H. We denote the cardinal number of these sets by the corresponding lower case
letter. For p ∈ H, let d∗(p) be the value 2 plus the number of points of the convex hull of P r {p}
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which are not vertices of the convex hull of P . Finally, let ξ be the number of red edges that are
generated by two distinct points of P . We have already seen that

er = 4n− 6− (i +
∑

p∈H

d∗(p))− ξ.

Using that
∑

p∈H d∗(p) = 2h + i1 + 2i2, we obtain that

er = 2n− 6 + i0 − i2 − ξ.

Substituting i0 ≤ n− h, i2 ≥ 0, and ξ ≥ 0, we can conclude

er ≤ 3n− h− 6.

Next we prove that the red crossing graph is K4-free.

By Observation 3.1.6, if two red edges pipj , plpm cross, either every circle through pi, pj contains
pl or pm, or viceversa. If every circle through pi, pj contains pl or pm, we say that plpm constrains
pipj .

Let pipj , plpm, and pspt be three pairwise crossing red edges. Since all the endpoints of these
edges are distinct, every edge can only be constrained by one of the other two. Thus, without loss
of generality, we can assume that plpm constrains pipj , pspt constrains plpm, and pipj constrains
pspt. Now suppose that there exists a red edge pupv that crosses pipj , plpm, and pspt. Then pupv

must be constrained by pipj , plpm, and pspt, which is impossible because at least one circle through
pu, pv only contains one point from P .

3.1.6 Proof of Proposition 2.1.6

We use the construction described in Proposition 2.3.5 for the particular case k = 1. The number of
crossings involving two points from the middle group and either two points from the upper group
or two points from the lower group is 2

(
n−4

2

)
.

3.1.7 Proof of Theorem 2.1.7

First of all we need a technical result.

Lemma 3.1.11. If G is a graph such that v(G) = n and e(G) ≤ n − 5, then
∑

v∈V (G) d2
G(v) ≤

e2(G) + 3e(G).

Proof. The proof of the lemma is by induction on the order of the graph. As in the proof of
Lemma 3.1.8, the small cases are trivial, so we proceed to the inductive step.

Observe that there exists a vertex v′ in the graph having degree zero or one. We distinguish
two cases.

First assume that v′ has degree zero. If G has no edges, the result trivially holds. Otherwise,
let uw be an edge of G and let G′ be defined as the graph Gr v′ r uw. We have

∑

v∈V (G)

d2
G(v) =

∑

v 6=v′,u,w

d2
G(v) + d2

G(v′) + d2
G(u) + d2

G(w) =

=
∑

v 6=v′,u,w

d2
G′(v) + (dG′(u) + 1)2 + (dG′(w) + 1)2 =

=
∑

v∈V (G′)

d2
G′(v) + 2((dG′(u) + dG′(w)) + 2
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Applying the induction hypothesis and using the fact that dG′(u) + dG′(w) ≤ e(G′) + 1,

∑

v∈V (G)

d2
G(v) ≤ (e(G)− 1)2 + 3(e(G)− 1) + 2e(G) + 2 = e2(G) + 3e(G).

Next suppose that v′ has degree one. Let u be the vertex adjacent to v′ in G and G′ be the graph
Gr v′. Then,

∑

v∈V (G)

d2
G(v) =

∑

v 6=v′,u

d2
G(v) + d2

G(v′) + d2
G(u) =

∑

v 6=v′,u

d2
G′(v) + 1 + (dG′(u) + 1)2 =

=
∑

v∈V (G′)

d2
G′(v) + 2dG′(u) + 2 ≤ (e(G)− 1)2 + 3(e(G)− 1) + 2(e(G)− 1) + 2 ≤

≤ e2(G) + 3e(G).

Now we are ready to prove Theorem 2.1.7.

If P is in convex position, then eb = 2n− 3. Since, in general, er ≤ 3n− h− 6 (see the proof of
Lemma 3.1.10), in the convex case we have that er ≤ 2n− 6.

Let pi, pi+1, and pi+2 be three consecutive points in the convex hull of P . Let us suppose that
we momentarily remove from 1-DG(P ) the edges pipi+1, pi+1pi+2, and pipi+2 for all i. Let eb′ and
er′ respectively be the number of blue and red edges in 1-DG(P ) after these removals. It is not
difficult to see that n/2− 3 ≤ eb′ ≤ n− 5 and er′ ≤ 2n− 9− eb′ .

For all i, the edges pipi+1 are not involved in any crossing. The edges of the form pipi+2

participate in a total number of at most 5n− 18 crossings, as pairs of edges of this type generate n
crossings, and each of the (at most) 2n− 9 remaining edges in 1-DG(P ) induces two crossings with
them. Let r′ ⊗ r′ denote the number of crossings between two red edges that are not of the form
pipi+2. Then

£ (1-DG(P )) ≤ r ⊗ b + r′ ⊗ r′ + 5n− 18.

Let G = 0-DG(P ) and G′ be the graph on P consisting of the edges of G not of the form pipi+1

or pipi+2. As we have seen in Lemma 3.1.9,

r ⊗ b ≤
∑

p∈P

dG(p)−2∑
ν=1

ν =
1
2

∑

p∈P

(d2
G(p)− 3dG(p) + 2).

Notice that, for all p ∈ P , dG(p) = dG′(p) + 4. Hence

r ⊗ b ≤ 1
2

∑

v∈P

(d2
G′(v) + 5dG′(v) + 6).

By Lemma 3.1.11,

r ⊗ b ≤ e2
b′

2
+

13eb′

2
+ 3n.

Next we bound r′ ⊗ r′. Recall that er′ ≤ 2n − 9 − eb′ . Following the same argument as in the
proof of Lemma 3.1.10, we obtain

r′ ⊗ r′ ≤ (2n− 9− eb′)2

3
.
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Thus, putting everything together,

£ (1-DG(P )) ≤ 5e2
b′

6
+

(
25
2
− 4n

3

)
eb′ +

(
4n2

3
− 4n + 9

)
=: f(eb′).

For n large enough, the maximum value of the function f(eb′) in the domain [n/2− 3, n− 5] is
achieved in the lower extreme of the interval and is equal to 7n2/8 + 15n/4 − 21. This completes
the proof.

3.1.8 Proof of Proposition 2.1.8

Consider a set of n− 2 points on a circle together with 2 points close to its center, as in Figure 3
(right). In the graph 1-DG(Q) each point in the circular chain is adjacent to both central points.
Therefore the number of crossings of 1-DG(Q) is greater than

(
n−2

2

)
.

3.2 Proof of the results in Subsection 2.2

In this subsection we prove the results in Table 2. The arrows in the figures have been suppressed
for the sake of readability.

Proposition 3.2.1. For any n ≥ 2, cr(1-NNG(n)) = 0.

Proof. For any n-point set P, the graph 1-NNG(P ) is plane, so it has no crossings.

Proposition 3.2.2. For any n ≥ 3, cr(2-NNG(n)) = 0.

Proof. Let Q be the set of vertices of a slightly perturbed (so that no four points are concyclic)
regular n-gon. Then, in 2-NNG(Q), each vertex is adjacent to its two contiguous vertices in the
boundary of the polygon. Thus 2-NNG(Q) is a plane graph.

Proposition 3.2.3. For any n ≥ 4, cr(3-NNG(n)) = 0.

Proof. Consider the examples of plane 3-NNG(Q) for |Q| = 4, 5, 6, 7 in Figure 5. Let Qi (i ∈
{4, 5, 6, 7}) denote the example with i points. If n = 4l + j, with l ∈ N and j ∈ {0, 1, 2, 3}, we
construct an n-point set made up of l − 1 copies of Q4 and one copy of Q4+j . If these clusters are
far enough from each other, the three nearest neighbor graph of the resulting set of points do not
contain edges whose endpoints belong to two different clusters. Consequently, the graph is plane.

Figure 5: Point sets of cardinality 4, 5, 6 and 7 whose 3-NNG is plane.

Proposition 3.2.4. For any n ≥ 14, cr(4-NNG(n)) = 0.

15



Proof. If n is even, first we place the vertices of a (slightly perturbed) regular n/2-gon. Afterwards
we add an interior n/2-gon such that each vertex is very close to the midpoint of one of the edges
of the exterior polygon (see Figure 6, left). If n ≥ 8, the four nearest neighbor graph of this set of
points contains the boundaries of both polygons and the edges connecting each point in the exterior
polygon to its two closest points in the interior polygon.

If n is odd, consider the previous construction with n − 1 points and add a new point close
to the center. If n ≥ 15, the four nearest neighbor graph is augmented by only four new edges,
namely, the ones connecting the new point to its four nearest neighbors, which are all in the interior
polygon (see Figure 6, right). Hence no crossing is created.

Figure 6: Point sets of cardinality 10 and 17 whose 4-NNG is plane.

Proposition 3.2.5. For any n ≥ 44, cr(5-NNG(n)) = 0.

Proof. We start considering values of n of the form n = 4l, with l ≥ 13. We place the following four
groups of l points (i ∈ {1, 2, . . . , l}):

pi =
1

2 sin(π/l)

(
cos

(
2πi

l

)
, sin

(
2πi

l

))
,

qi =

(
1

2 tan(π/l)
+
√

3
2

) (
cos

(
2πi

l
+

π

l

)
, sin

(
2πi

l
+

π

l

))
,

ri =
1

2 sin(π/l)(1− 2 sin(π/l))

(
cos

(
2πi

l

)
, sin

(
2πi

l

))
,

si =

(
1

2 tan(π/l)
+
√

3
2

)
(1 + 2 sin(π/l))

(
cos

(
2πi

l
+

π

l

)
, sin

(
2πi

l
+

π

l

))
.

These points correspond to four regular and concentric l-gons with increasing radius (see Fig-
ure 7). Easy calculations show that |pipi+1| = |pi+1qi| = |qipi| = 1, |piri| = |riri+1| and
|qiqi+1| = |qisi|. In order to break the last two equalities we slightly decrease the radius of the
third and fourth polygons. We also perturb the points to reach a general position.

The five nearest neighbor graph of the resulting set of points has the edges shown in Figure 7.
In particular, it is plane. If l < 13, the adjacencies change and the graph contains several crossings.
However, for l = 11 and l = 12 these crossings can be removed by decreasing a bit the radius of the
third circle. So we have proved that for any n ≥ 44, n ≡ 0 (mod 4), there exist an n-point set Qn

whose five nearest neighbor graph is plane.

If n = 4l + j, with l ≥ 11 and j ∈ {1, 2, 3}, we can add j points close to the center of the set
Q4l in such a way that the five nearest neighbor graph remains plane.
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pi

si+1

qi+1

qi

pi+1

ri+1

si
ri

Figure 7: Set of 56 points whose 5-NNG is plane.

Proposition 3.2.6. For any n ≥ 39, cr(6-NNG(n)) ≤ 58.

Proof. Let us first assume that n = 13l, with l ≥ 3.

Consider a group of l regular and concentric 13-gons R1, R2, . . . , Rl. The polygon Ri, for i ∈
{2, 3, . . . , l−1}, is rotated by an angle of π/13 with respect to the polygon Ri−1, while Rl is rotated
by an angle slightly larger than π/13 with respect to Rl−1 to break ties. The radius of R1 is 0.9,
and the radius of Ri for i > 2 is 1.386i−1. The points are perturbed so that they are in general
position. See Figure 8.

Regardless of the value of l, the six nearest neighbor graph of this set of points has 52 crossings,
as the crossings only involve vertices from R1, Rl−2, Rl−1 and Rl. This settles the problem for
values of n that are multiple of 13.

If n = 13l + j, with l ≥ 3 and j ∈ {1, 2, . . . , 12}, we add j consecutive points of the polygon
Rl+1. The six nearest neighbor graph of the new point set has 6 extra crossings.

Proposition 3.2.7. For any n ≥ 11,

i) cr(7-NNG(n)) ≥ n
2 + 6,

ii) cr(8-NNG(n)) ≥ n + 50
3 ,

iii) cr(9-NNG(n)) ≥ 13n
6 + 50

3 ,

iv) cr(10-NNG(n)) ≥ 10n
3 + 50

3 ,

Proof. For every set of points P, the number of edges of k-NNG(P ) is at least kn/2, since each
vertex has degree k or greater. Now the first bound follows from the well-known fact that, for any
graph G, its crossing number satisfies that cr(G) ≥ e(G)− (3v(G)− 6). The remaining bounds are
a corollary of the following result:
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Figure 8: Set of 78 points whose 6-NNG has 52 crossings.

Theorem 3.2.8. [21] The crossing number of any graph G with v(G) ≥ 3 vertices and e(G) edges
satisfies

cr(G) ≥ 7
3
e(G)− 25

3
(v(G)− 2).

Proposition 3.2.9. For any n ≥ 8, cr(7-NNG(n)) ≤ n
2 + Θ(1).

Proof. If n ≤ 24, the result is trivial.

If n = 25l with l ≥ 1, we place l regular and concentric 25-gons R1, R2, . . . , Rl (see Figure 9,
left). The polygons Ri such that i = 4j + 1 or i = 4j + 2 for some j ≥ 0 have all the same
orientation, while the remaining polygons are rotated by an angle of π/25 with respect to them.
For all i, the radius of Ri is 1.27i. The points are perturbed to attain general position.

Ignoring some crossings that occur near the boundaries, the seven nearest neighbor graph of
this point set contains n/2 crossings (or (n − 25)/2, depending on the parity of l), because the
crossings only take place between consecutive 25-gons of the form R2j+1, R2j+2, and, for each pair,
the number of such crossings is 25. The crossings near the boundaries only contribute an additive
factor of constant size.

Finally, if n = 25l + j, with l ≥ 1 and j ∈ {1, 2, . . . , 24}, we add j consecutive points of the
polygon Rl+1. This only adds a constant number of extra crossings.

Proposition 3.2.10. For any n ≥ 9, cr(8-NNG(n)) ≤ n + Θ(1).

Proof. We also use concentric polygons. For constant values of n the bound is trivial, and for
n = 26l + j we use the same strategy as in previous cases, so here we focus on the case where
n = 26l.
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Figure 9: Left: point set whose 7-NNG has n/2 + Θ(1) crossings. Right: point set whose 8-NNG
has n + Θ(1) crossings.

We consider l regular and concentric 26-gons R1, R2, . . . , Rl with the same orientation (see
Figure 9, right). For all i, the radius of Ri is 1.3i. The points are infinitesimally perturbed.

The eight nearest neighbor graph of this point set has n+Θ(1) crossings. The linear term comes
from the fact that in the region between any pair of consecutive 26-gons there are 26 crossings.
The constant term comes from some additional crossings that take place near the boundaries of the
point set.

Proposition 3.2.11. For any n ≥ 10, cr(9-NNG(n)) ≤ 31n/13 + Θ(1).

Proof. We propose the construction in Figure 10. A careful analysis of the drawing yields that the
nine nearest neighbor graph of the point set has 31n/13+Θ(

√
n) crossings. The term Θ(

√
n) comes

from crossings that take place near the boundary of the point set. Since the 9 nearest neighbors
of each point are well-defined, the point positions can be slightly perturbed without modifying the
set of nearest neighbors of each point. Thus we can rearrange the points in circular strips, where
each strip contains exactly the minimum number of points ensuring that the adjacencies in the nine
nearest neighbor graph do not change. This reduces the number of crossings to 31n/13 + Θ(1). We
omit further details due to the high complexity of the point set.

Proposition 3.2.12. For any n ≥ 11, cr(10-NNG(n)) ≤ 4n + Θ(1).

Proof. Our construction is shown in Figure 11. It can be seen that the ten nearest neighbor graph
of the point set contains 4n+Θ(

√
n) crossings. Using the same strategy as in the previous example,

we can modify the construction to obtain a new set of points whose 10-NNG has 4n+Θ(1) crossings.
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Figure 10: Left: set of points whose 9-NNG has 31n/13 + Θ(
√

n) crossings. Right: zoom of the
figure on the left.

3.3 Proofs of the results in Subsection 2.3

3.3.1 Proof of Theorem 2.3.1

For every set of points P, the number of edges of k-NNG(P ) is no less than kn/2. The graphs
k-RNG(P ) and k-GG(P ) contain all edges present in k-NNG(P ), so they also have at least kn/2
edges.

A stronger lower bound is known for the graph k-DG(P ). If k < n
2 − 1, then the number of

edges of k-DG(P ) is at least (k + 1)n (see [1]).

Now the bounds on the number of crossings follow from the next theorem:

Theorem 3.3.1. [21] The crossing number of any graph G such that e(G) ≥ 103
16 v(G) satisfies

cr(G) ≥ 1024
31827

e3(G)
v2(G) .

3.3.2 Proof of Proposition 2.3.2

We use the following result in [23]. We note that, instead of π/9, the incorrect coefficient 2π/27
was originally reported. The correct coefficient was later reported in [21].

Proposition 3.3.2. [23] Let ω(1) ≤ d ≤ o(
√

n). Let Q be a set of n points arranged in a slightly
perturbed unit square grid of size

√
n × √n, so that the points are in general position. Define Gd

as the geometric graph on Q where two points are connected if their distance is at most d. Then
the number of crossings in Gd satisfies £ (Gd) = π

9 nd6(1 + o(1)).

Let Q be the set just described. First note that the k closest points to a point in Q not close
to the boundary consist of those points inside a circle of radius d =

√
k/π + Θ(1). For the points

close to the boundary, that is within d from it, their k closest points consist of those points in Q
inside a circle of radius at most 2d. Thus k-NNG(Q) has all the edges in Gd and some of the edges
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Figure 11: Point set whose 10-NNG has 4n + Θ(
√

n) crossings.

in G2d whose endpoints are within d of the boundary. Thus

£ (k-NNG(Q)) ≤ π

9
nd6(1 + o(1)) +

(π

9
n(2d)6(1 + o(1))− π

9
(
√

n− 2d)2(2d)6(1 + o(1))
)
≤

≤ π

9
nd6(1 + o(1)) + Θ(

√
nd7) =

π

9
nd6(1 + o(1)) =

1
9π2

k3n(1 + o(1)).

Except for a similar analysis for the points close to the boundary, two points in Q are neighbors

in k-RNG(Q) if their distance is at most d =
√

k/(2π/3−√3/2) + Θ(1). Similarly, two points are

neighbors in k-GG(Q) or in k-DG(Q) if their distance is at most d = 2
√

k/π. The result follows by
the Proposition and by noting that the extra crossings caused by the points close to the boundary
are at most o(nd6).

3.3.3 Proof of Theorem 2.3.3

Let e be an edge of k-DG(P ). Let us see that there are many edges in k-DG(P ) that do not cross e.

For the sake of simplicity, let us assume that e is horizontal. The line extending e divides P
minus the endpoints of e into two groups. Let Pa and Pb respectively denote the set of points above
and below the line. We set |Pa| = l. Observe that |Pb| = n− l − 2.

Let us first assume that |Pa| ≥ k + 2 and |Pb| ≥ k + 2. Let p1, p2, . . . , pl denote the points in Pa

sorted from top to bottom. If i ∈ [2, k+2] and j ∈ [1, i−1], then pi is adjacent to pj in k-DG(P ). It
suffices to consider the circle through pi and pj tangent to the horizontal line containing pi. From
all points in P , this circle can only contain {p1, p2, . . . , pi−1} \ {pj} in its interior. Notice that the
edges pip1, pip2, . . . , pipi−1 do not cross e.

If i ∈ [k + 3, l], we consider the same family of circles. More precisely, we consider a circle
tangent to the horizontal line through pi growing until its interior contains k + 1 points from Pa

(it could happen that the interior of the circle goes from having k points from Pa to having k + 2
points from Pa; this case is similar). Then in k-DG(P ) these k + 1 points are connected to pi and
all these edges do not cross e.

In conclusion, there exist (k + 1)(k + 2)/2 + (l− (k + 2))(k + 1) edges between points in Pa not
crossing e. By analogous arguments, there exist (k +1)(k +2)/2+ (n− l− 2− (k +2))(k +1) edges
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between points in Pb not crossing e. This adds up to a total number of (k + 1)(n− k − 4) edges.

It remains to settle the case where either |Pa| < k + 2 or |Pb| < k + 2. Let us suppose that
|Pa| < k + 2; since k < n/2 − 1, we have that |Pb| ≥ k + 1. Arguing as in the previous case, we
find (l − 1)l/2 + (k + 1)(k + 2)/2 + (n− l − 2− (k + 2))(k + 1) edges that do not cross e. It is not
difficult to see that, for any l < k + 2, this number is always greater than (k + 1)(n− k − 4).

In summary, since k-DG(P ) contains at most 3(k+1)n−3(k+1)(k+2) edges, e crosses no more
than 3(k + 1)n− 3(k + 1)(k + 2)− 1− (k + 1)(n− k − 4) edges in k-DG(P ). Hence the number of
crossings of k-DG(P ) is upper bounded by 1

2 (3(k + 1)n− 3(k + 1)(k + 2)) (3(k + 1)n− 3(k + 1)(k +
2)− 1− (k + 1)(n− k − 4)).

3.3.4 Proof of Proposition 2.3.4

Refer to Figure 12 (left). The upper chain contains n − k − 1 points on a circle C such that the
distance between consecutive points is constant. Let qi, qi+1 be two such consecutive points. Let
l be the line through qi+1 perpendicular to −−−→qiqi+1, and let d be the distance between l and the
center of C. The lower chain forms a convex chain seen from the upper chain and contains k + 1
points that are at distance less than d from the center of C. This ensures that the closed disk
with diameter given by qi and some point from the lower chain does not contain any point from
the upper chain different from qi. Thus in k-GG(Q) each point from the upper group is adjacent to
each point from the lower group. Notice that the construction can be perturbed to attain general
position.

3.3.5 Proof of Proposition 2.3.5

Refer to Figure 12 (right). The number of points in the upper group is k + 1, and the lower group
contains the same number of points. The rest of points are placed in the middle group. In k-DG(Q)
each point qi in the middle group is connected to all upper and lower points, as it suffices to consider
families of increasing circles through qi with center at the vertical line through qi. This construction
can be perturbed so that it becomes non-degenerate.

Figure 12: Left: set of points whose k-GG has k2n2/4 + o(k2n2) crossings. Right: set of points
whose k-DG has k2n2/2 + o(k2n2) crossings.

3.3.6 Proof of Theorem 2.3.6

Lemma 3.3.3. In any angular sector with apex p ∈ P and amplitude α ≤ π/3, the only points that
can be connected to p in the graph k-RNG(P ) are the k + 1 closest points to p that are contained in
the sector.
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Proof. Let p1, p2, . . . be the points of P that are contained in the sector sorted by increasing distance
to p. For each i ≥ 2, the points p1, p2, . . . , pi−1 are contained in the intersection of the two disks
centered at p, pi with radius |ppi| (see Figure 13, left). Consequently, p and pi are not connected
in k-RNG(P ) if i− 1 > k.

Let e = pipj be an edge in k-RNG(P ). We define the lens associated to e as the open intersection
of the circles centered at pi and pj with radius |pipj |∗.

Now let us define a charging scheme that assigns every crossing in k-RNG(P ) to each of the two
involved edges e satisfying that at least one of the endpoints of the other edge is contained in the
lens associated to e. Since each crossing defines a quadrilateral having at least one obtuse angle,
the crossing is (at least) assigned to the edge opposite to this angle.

Let e be an edge in k-RNG(P ). The lens associated to e contains at most k points in P. By
Lemma 3.3.3, each of them is adjacent to no more than 3k + 3 points in P such that the edge that
connects them crosses e. Consequently, at most 3k2 + 3k crossings may be assigned to e.

Since each vertex in P has degree at most 6k + 6 (see Lemma 3.3.3), the number of edges of
k-RNG(P ) does not exceed 3kn + 3n, which yields the theorem.

3.3.7 Proof of Theorem 2.3.7

The proof of Theorem 2.3.7 requires several technical lemmas. The first one is a corollary of
Lemma 3.3.3:

Lemma 3.3.4. In any angular sector with apex p ∈ P and amplitude α ≤ π/3, the only points that
can be connected to p in the graph k-NNG(P ) are the k closest points to p that are contained in the
sector.

Lemma 3.3.5. Let pi, pj , pl, pm be four elements of P, with |pipj | < |pipl| < |pipm|. If pjpm crosses
pipl, then |pjpl| < |pjpm|.

Proof. Let Ci,l and Cj,l respectively be the circles centered at pi and pj containing pl in the
boundary (see Figure 13, middle). These circles have a non empty intersection and, since pi, pj ,
and pl are not aligned, Ci,l is not contained in Cj,l, nor Cj,l is contained in Ci,l. Let q be the
intersection point between Ci,l and the ray starting at pj and passing through pi. We have that
|pjq| > |pjpl|. Therefore the ray starting at pj and passing through pi intersects Cj,l before Ci,l.
This property is maintained for all rays starting at pj and contained in the wedge induced by the
angle ∠pipjpl. In particular, it is maintained for the ray starting at pj and containing pm. Since
pm lies outside Ci,l, pm is not contained in Cj,l, so |pjpl| < |pjpm|.

Lemma 3.3.6. Let pi, pj , pl be three elements of P, with |pipj | < |pipl|. Then all points pm such
that pjpm crosses pipl, |pipl| < |pipm|, |pmpi| > |pmpj |, and |pmpl| > |pmpj | are contained in an
angular sector with apex pi and amplitude at most π/3.

Proof. Without loss of generality, we assume that the line through pi and pl is vertical, pi is above
pl, and pj is to the left of this line. The other situations are symmetric.

Let C be the circle centered at pi and containing pl in the boundary. Let li,j and lj,l respec-
tively be the bisectors of pipj and pjpl. A point pm satisfying the hypothesis of the lemma lie on
the intersection R of the following four regions: the exterior of C, the semiplane opposite to pi

∗Unfortunately, it is standard in the computational geometry literature that a lens is incorrectly called a lune.
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Figure 13: Left: an angular sector with apex p and amplitude α ≤ π/3. Middle: four points
satisfying the hypothesis of Lemma 3.3.5. Right: the region R in Lemma 3.3.6.

determined by li,j , the semiplane opposite to pl determined by lj,l, and the wedge induced by the
angle ∠pipjpl (see Figure 13, right).

If pj has greater or equal ordinate than pi, it is not difficult to see that region R is empty.
Observe that R is also empty if li,j or lj,l do not intersect the arc of C determined by the wedge
induced by ∠pipjpl. Therefore the lemma clearly holds in these cases.

Let us now suppose that pj has smaller ordinate than pi, li,j intersects the arc of C determined
by the wedge induced by ∠pipjpl in a point q, and lj,l intersects the arc of C determined by the
wedge induced by ∠pipjpl in a point r. Let t be the intersection of li,j and lj,l. In order for R not
to be empty t must lie outside C. Let us assume that we are in this situation.

Consider the wedge formed by the ray starting at pj and passing through q together with the
ray starting from pj and passing through r. Observe that R is contained in this wedge. We will
end the proof by showing that this wedge has angle at most π/3. Let t′ be the intersection of the
bisector of pipl with the the arc of C determined by the wedge induced by ∠pipjpl. Notice that
∠pjpiq > ∠pjpit

′ > ∠plpit
′. By analogous arguments, ∠pjplr > ∠piplt

′. Since ∠plpit
′ and ∠piplt

′

are angles of the equilateral triangle formed by pi, pl, and t′, then ∠pjpiq and ∠pjplr are greater
than π/3. This implies that ∠pipjq and ∠plpjr are greater than π/3, since ∠pjpiq = ∠pipjq and
∠plpjr = ∠pjplr. Given that ∠pipjq + ∠qpjr + ∠rpjpl < π, we conclude that ∠qpjr < π/3.

Now we are ready to prove Theorem 2.3.7.

Consider two crossing edges in k-NNG(P ) involving vertices pi, pj , pl, pm. We assign the crossing
to each of the pairs of edges {−−→pipl,

−−→pipj} satisfying: (i) one of the two crossing edges is −−→pipl; (ii)
|pipj | < |pipl| (so −−→pipj ∈ E(k-NNG(P ))).

Let us show that this assignment is consistent. The quadrilateral defined by the vertices involved
in the crossing has at least one obtuse angle. Then the crossing is assigned to the pair of directed
edges consisting of the edge opposite to this obtuse angle (which is a diagonal of the quadrilateral)
and one edge with the same origin and lying in one side of the quadrilateral.

We devise a charging scheme that divides the weight of each crossing by the number of pairs of
edges the crossing is assigned to. We say that a crossing is simple if it is only assigned to one pair
of edges, and we say that it is multiple otherwise. In the following we find the maximum weight
that a pair of edges can receive.

Let pj and pl be two of the k nearest neighbors of pi, with |pipj | < |pipl|. Each crossing assigned
to {−−→pipl,

−−→pipj} can be associated with a vertex adjacent to pj in k-NNG(P ) (the fourth point involved
in the crossing). We want to bound the maximum number of such vertices. Let ŵ be the wedge
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induced by ∠pipjpl. If ŵ has amplitude at most 2π/3, then, by Lemma 3.3.4, the maximum number
of crossings that may be assigned to {−−→pipl,

−−→pipj} is 2k. Otherwise we partition ŵ into three wedges
ŵ1, ŵ2, and ŵ3 as follows: ŵ1 is bounded by the half-line with origin at pj and direction given
by −−→pjpi and has amplitude pi/3; ŵ3 is bounded by the half-line with origin at pj and direction
given by −−→pjpl and has amplitude pi/3; ŵ2 consists of the part of ŵ not covered by ŵ1 and ŵ3. For
ν ∈ {1, 2, 3}, let nν be the number of vertices in ŵν that create a crossing assigned to {−−→pipl,

−−→pipj}.
A direct application of Lemma 3.3.4 yields that nν ≤ k for ν ∈ {1, 2, 3}. Furthermore, since pi

is a point in ŵ1 adjacent to pj , we have that n1 ≤ k − 1. Finally, consider the k closest points
to pj contained in ŵ3, which, by Lemma 3.3.4, are the only candidates to be connected to pj in
k-NNG(P ). Observe that pl belongs to this set: otherwise, by Lemma 3.3.5, there would be k points
pm such that |pipl| > |pipm|, which is absurd because −−→pipl ∈ E(k-NNG(P )). Thus n3 ≤ k − 1. In
conclusion, the maximum number of crossings that may be assigned to {−−→pipl,

−−→pipj} is 3k − 2.

Next we analyze the maximum number of simple crossings that may be assigned to {−−→pipl,
−−→pipj}.

Let pm be a vertex in P such that the edge pjpm (with some orientation) causes a crossing assigned
to {−−→pipl,

−−→pipj}. If |pipm| < |pipl|, then the crossing is also assigned to {−−→pipl,
−−→pipm}. If |pipm| > |pipl|

and −−−→pjpm ∈ E(k-NNG(P )), then, by Lemma 3.3.5, |pjpl| < |pjpm| and the crossing is also assigned
to {−−−→pjpm,−−→pjpl}. If |pipm| > |pipl|, −−−→pmpj ∈ E(k-NNG(P )), and |pmpj | > |pmpi| or |pmpj | > |pmpl|,
then the crossing is also assigned to {−−−→pmpj ,

−−→pmpi} or {−−−→pmpj ,
−−→pmpl}. Therefore three necessary

conditions for pm to cause a simple crossing assigned to {−−→pipl,
−−→pipj} are: (i) |pipm| > |pipl|; (ii)−−−→pmpj ∈ E(k-NNG(P )); (iii) |pmpi| > |pmpj | and |pmpl| > |pmpj |. By Lemmas 3.3.6 and 3.3.4, there

are at most k such points.

To conclude, in the worst case k simple crossings and 2k−2 crossings of weight 1/2 are assigned
to {−−→pipl,

−−→pipj}. Thus any pair of edges in k-NNG(P ) receives weight at most 2k − 1.

3.3.8 Proof of Proposition 2.3.8

Consider the set Q = {q1, q2, . . . , qn}, where qi = (2i, 0). Let us slightly perturb the configuration
so that the points are in convex position. The k nearest neighbors of each point qi such that i > k
are qi−1, qi−2, . . . , qi−k. Therefore, if i ∈ [k + 1, n − k], then qi is connected in k-NNG(Q) to its k
predecessors and k successors in the “line”.

Let −−→qiqj , −−→qlqm be two crossing edges such that j < m < i < l. We assign this crossing to qj . Sup-
pose that j ∈ [k+1, n−k]. Then the crossings between−−→qiqj and the following edges are assigned to qj :−−−−−→qj+1qj−1,

−−−−−→qj+2qj−1, . . . ,
−−−−−−−→qj+k−1qj−1,

−−−−−→qj+1qj−2,
−−−−−→qj+2qj−2, . . . ,

−−−−−−−→qj+k−2qj−2, . . . ,
−−−−−→qj+1qi+1,

−−−−−→qj+2qi+1, . . . ,−−−−−−−→qi+k+1qi+1. This adds up to
∑k−1

ν=i+k+1−j ν crossings. Since i might take values from j−k to j− 2,
the total number of crossings assigned to qj is

j−2∑

i=j−k

k−1∑

ν=i+k+1−j

ν =
k−1∑
ν=1

ν2 =
k3

3
− k2

2
+

k

6
.

Given that j is an index in [k+1, n−k], the preceding charging scheme guarantees that k-NNG(Q)
contains (n− 2k)

(
k3/3− k2/2 + k/6

)
crossings. Notice that the crossings we have not account for

in this argument have order o(k3n).
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