Convex polyhedra in R? spanning Q(n*/?) congruent triangles.
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Abstract

We construct n-vertex convex polyhedra with the property stated in the title

In this note we construct, for every fixed triangle T', a n-vertex convex polyhedron
determining Q(n*/?) triangles congruent to 7' among its triplets. Even with the convexity
assumption dropped, this was only known when 7" is an isosceles right triangle (see [2] and
[4]). With respect to the upper bound Brass [2] proved that n points in R? span at most
O(n"/4+¢) triangles congruent to T" and very recently Agarwal and Sharir [1] improved this
and obtained the current best bound of O(n®/31¢). There are no better bounds that take
advantage of the convexity restriction.

We say that a finite subset of R3 is in convex position if it is the vertex set of a convex
polyhedron. CH(K) will denote the convex hull of K and 0K the boundary of K. We
prove a slighthly stronger statement. Let U be a quadrilateral with perpendicular diagonals.
Assume u; = (d1,0,0),u2 = (0,0,d2),us = (—ds,0,0), and ug = (0,0, —d4) with d; > 0
are the vertices of U and o = (0,0, 0) is the intersection of its diagonals. For any finite set
P C R3 let F(U; P) be the number of quadruplets in P congruent to U. Let

F§o"(U;n) = max {F(U; P) : P C R?, P in convex position, |P| = n},

since any triangle 7' can be completed to such a quadrilateral U (by reflecting upon the
largest side), it is enough to prove that

Theorem 1 F§o™(U;n) = Q(n*/?)

The proof of the Theorem will be based on two lemmas.
For every 0 < a < § and 1 <14 < 4 define the following arcs of circle

Arci(a) ={v=(2,y,2) :y = 0, |[v]| = di, [{vous| < a}

Lemma 1 There is a > 0 so that | J_, Arc;(a) C 0 (C’H (U?:1 Arq(oz))) .

Proof. Suppose d; < da, let a1 2 = %arcsin(dl /d2). Let a and b be points in the plane
y = 0 defined by |la|| = d1,||b|| = d2, and Lujoa = Lbouy = a; 2. By construction Laob =
% — 2012, thus cos(£aob) = sin(2a2) = di/dy, and then £oab = 5. This proves that
Arci(an2) UArca(an2) € 0 (CH (Arci(ai) U Arca(aa2))). Clearly any value smaller than
a2 would work for the pair (dp,ds2), therefore by picking o < %arcsin(minlgmg d;/d;)

the result follows. ]



Let e; = (1,0,0), e2 = (0,0,1), e3 = (—1,0,0), e4 = (0,0, —1),and S = {v € R3: ||o| = 1}.
The next lemma without the additional property (ii) was first proved in [4] by Erdds et al.

Lemma 2 For everye > 0 andn € N there are n-sets Q1, Q2, Q3, Q4 C S with the following
properties

(i) There are cn*® quadruplets (q1,q2,qs,qa) with ¢; € Q; and q1q2q3qa a square of diam-
eter 2.

(ii) Lqioe; < e for every q; € Q;, 1 <1< 4.

Proof. Erdés (see [3]) constructed an n-element set P in the plane and a set of n lines L
such that the number of incidences among them is at least cn®/? (The set P consists of a \/nx
v/n grid, and L includes the n lines with more points in P). We can assume that all lines in L
have slope smaller than —1 and also that P C {(z,y,—1) € R* :z € (m,m+ 1),y € (0,1)}.
For every p = (2p, yp, —1) € P let g} and g3 be the points obtained as the intersection of S
with the line po, i.e., if p = (x,y,—1) then qll) = —qg = ||p||_1 (xp,Yp, —1). Also for every
| € L with equation z = —1, Ajz + Biy = Cj, (C; > 0 and A? + B? + C? = 1) consider the
plane 7; through o which contains [. Let qu and ‘114 be the points obtained as the intersection
of S with the line through o perpendicular to m, i.e., ¢ = —¢} = (A, Bi, C)).

For i = 1,3 let @Q; = {¢} : p € P} and Q41 = {g/*" : | € L}. Assume p € [,
by construction, ¢7 and g} are at distance /2 from every point in the circle m N S, in

particular from q}) and qg. Since q},,qﬁ and ¢?,q}t are antipodes on S we conclude that

q},qfngf is a square of diagonal 2. Therefore the number of such squares in Ule Q; is at

least cn?/3.
Now, to prove property (ii) we show that for allp € P,l € L, and i = 1,3
: i _ 1 i+1 . —
lim |[g, —eif| = lim [lg™" —eia| =0.
By symmetry we only prove this equality for ¢ = 1. If p € P then z, € (m,m + 1) and
yp < 1, thus

2y, 2m
pll V2+ (m+1)2

If [ € L then, in the plane z = —1, [ has slope —A4;/B; < —1 and it intersects the solid
square (m,m + 1) x (0,1). Thus 0 < C;/B; and m < Cj/A;, but since C; > 0 we get
0< B < A;and 4; < C'l/m Hence

Hq;,*@lH2=2 — 0 when m — oo.

2 2
1=A,2+B,2+C,2<2A,2+012<012< +;n >,
m
therefore )
qu2*€2H2:2*201<2*—m—>0Whenmﬂoo.

V2 + m?



Proof of Theorem. By Lemma 1 there is 0 < a < 7/2 so that Ule Arci(a) C
0 (C’H (U?:1 Arq(oz))). Let ¢ = a and apply Lemma 2. For 1 < i < 4 define P, =
{diqi : ¢; € Q;}. We claim that P* := Ule P; gives the desired bound.

Let K =CH (Uf:1 Arci(oz)>. Construct K’ and K" as the solids of revolution obtained
from K by revolving around the z-axis and the z-axis respectively. Let K* = K'NK" clearly

K* is a convex set, and for 1 < i < 4 the sets Cap;(a) = {v € R3: ||v|| = d;, |Lvous| < o}
are caps of sphere which satisfy that

Capi(a) CK'NK"N(0K' UOK") = 0(K' N K") = 0K*.

Now, by property (ii) 4p;ou; < « for every p; € P;, thus P; C Cap;(«) and P* C 0K*.
Finally, since any supporting plane of K* intersects Ule Cap;(a) in at most one point, we
conclude that P* is in convex position; and clearly diqi, d2qo, d3qs, dsqs is congruent to U
whenever ¢1¢2g3qs is a square of diameter 2. Hence F (U;4n) > F(U; P*) > cn*/3 as we
wanted to prove. |
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