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Abstract

The specific mechanisms that underlie childhood stuttering are not fully understood. The current

study investigated these mechanisms by comparing the effect on fluency of priming different

components of a short sentence. The main findings were that: (1) both children who stutter

(CWS) (n = 12, M age = 6;3) and children who do not stutter (CWNS) (n = 12, M age = 6;6) were

more fluent after function word (FW) priming than content word (CW) priming, (2) this effect was

significantly greater for CWS than for CWNS, and (3) after FW priming, CWS produced CWs with

significantly longer duration than did CWNS. These findings are discussed in relation to two

competing theories of stuttering: the covert repair hypothesis (CRH) [Kolk, H., & Postma, A. (1997).

Stuttering as a covert repair phenomenon. In R. F. Curlee & G. M. Siegel (Eds.), Nature and

treatments of stuttering: New directions (pp. 182–203). Needham Heights, MA: Allyn & Bacon] and

the developmentally focused model of Howell and Au-Yeung [Howell, P., & Au-Yeung, J. (2002).

The EXPLAN theory of fluency control and the diagnosis of stuttering. In E. Fava (Ed.), Current

issues in linguistic theory series: Pathology and therapy of speech disorders (pp. 75–94). Amsterdam:

John Benjamins].

Learning outcomes: After reading this article, the reader will be able to: (1) understand which

linguistic levels can be primed in children who stutter; (2) see why EXPLAN predicts asymmetrical

effects on fluency when function or content words are primed; (3) appreciate the distinguishing

characteristics of CRH and EXPLAN theories.
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Stuttering is a developmental problem. It can both inform and be informed by studies of

development, and language development in particular. About 80% of children who stutter

(CWS) spontaneously recover by adulthood (Andrews et al., 1983; Andrews & Harris,

1964; Yairi & Ambrose, 1999). Does the way CWS generate speech change as they grow

older or are the speech generation processes of speakers who persist in the disorder and

those who recover, qualitatively different from the start? To answer this question, it is

necessary to identify the mechanisms that underlie the generation of fluent and disfluent

speech in connected discourse, and how they are related. This is a central question in

stuttering research and there is no consensus about the answer. There is disagreement in the

literature over whether one mechanism results in all forms of disfluent speech (Au-Yeung

& Howell, 2002), or whether ‘normal disfluencies’ and ‘stuttered speech’ are distinct forms

which potentially are the result of different mechanisms (Onslow & Packman, 2005). The

current paper aims to contribute to our knowledge of the processes behind stuttering by

specifying the nature of the speech production mechanisms that underpin fluent and

disfluent speech in both CWS and fluent children.

1. Existing models of the mechanisms that underlie disfluent speech

Kolk and Postma’s (1997) covert repair hypothesis (CRH) proposes that all disfluent

speech is caused by ‘covert repairs’ of phonological encoding errors that speakers detect

before they are expressed overtly (Levelt, 1989; Levelt, Roelofs, & Meyer, 1999). In the

example ‘‘Turn left at the, no, turn right at the crossroads’’, the word ‘‘left’’ is selected in

error, this is detected by the auditory system when it is spoken out loud and the speaker

makes the correction. According to CRH, errors can be detected at the phonological level

before they are spoken, resulting in covert interruption and repair. The earlier example

might then be realized as ‘‘Turn, turn right at the crossroads’’. The wrong word is produced

because words related to the one intended are activated concurrently and can be selected

(Kolk & Postma, 1997). A covert repair results when the erroneous word is detected and

corrected internally rather than externally.

The CRH suggests that children who recover from stuttering by adulthood are similar to

fluent speakers. Those whose stuttering persists represent the ‘true’ stuttering population

whose speech processing is distinct from that of fluent speakers. They produce more

disfluencies because their phonological processing is slower than that of fluent speakers,

leading them to select a word before the activation has resolved more often, and so need to

make more covert repairs. The evidence for such a difference is limited, as the CRH was

developed from adult data. Given that most CWS recover, adults who stutter represent only

a small proportion of those who stuttered as children, so findings cannot be generalised

from one age group to another. Yaruss and Conture (1996) applied the CRH to children,

They reasoned that if speech disfluencies reflect covert repairs to underlying errors, then

they should be subject to the same influences that give rise to overt repairs. Consistent with

this, speech errors and disfluencies were correlated in the naturalistic data of 3–6-year-old

CWS. However, covert repairs are not the only possible explanation for the data and the

study is as yet an isolated finding. The CRH requires more developmental evidence and it

remains an open question as to whether it can account for childhood stuttering.
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An alternative theory about stuttering is the EXPLAN model (derived from ‘EX’, the

speech execution mechanism, and ‘PLAN’, the parallel language planning mechanism).

The development, and evidence in favour, of EXPLAN are reviewed by Howell (2002,

2004) and Howell and Au-Yeung (2002). These authors argue that language planning

and execution are parallel independent processes with neither process being monitored

for errors. Consequently, they reject the notion of covert repairs, and instead propose

that disfluent speech reflects a mismatch between the timing of planning and the timing

of execution. Specifically, whilst someone is executing speech, they can plan upcoming

speech. Disfluency occurs if a speaker speaks fast and finishes executing one segment

before the plan for the next segment is ready. Consistent with this view, evidence has

been published that shows planning difficulty (Dworzynski & Howell, 2004; Howell,

Au-Yeung, Yaruss, & Eldridge, 2006) and local increases in speech rate (Howell, Au-

Yeung, & Pilgrim, 1999; Howell & Sackin, 2000) affect fluency. Like the CRH,

EXPLAN explains the disfluencies of fluent speakers and people who stutter (PWS) in

the same way. Unlike the CRH, EXPLAN suggests that the processing mechanism

of PWS starts out the same as those of fluent speakers. In childhood, the immature

speech planning system is often not ready for an upcoming word. Children can respond

in two alternate ways, ‘stalling’ or ‘advancing’. They may stall the upcoming speech

by pausing or repeating the preceding function word (FW), for which the plan remains

available. Function words are pronouns, articles, prepositions, conjunctions and

auxiliary verbs (Hartmann & Stork, 1972; Quirk, Greenbaum, Leech, & Svartvik, 1985)

which are phonologically simple. Alternatively, they may advance to the next

word before the plan is complete which is usually a content word (CW) and thus need

to repeat or prolong parts of the word whose plan is not ready until planning is

complete. Content words of the grammatical classes nouns, main verbs, adverbs and

adjectives (Hartmann & Stork, 1972; Quirk et al., 1985) which are phonologically

complex.

EXPLAN suggests that young CWS do not differ from fluent speakers, except that they

represent the slower end of the normal continuum for speech planning. The conception in

EXPLAN is different from the CRH, because the planning difference is global and not

specifically phonological. Most speakers recover as their speech processing system

matures, which accounts for the high spontaneous recovery rates for childhood stuttering

(Andrews et al., 1983; Andrews & Harris, 1964; Yairi & Ambrose, 1999). A minority of

CWS go on to persist in their stutter into adulthood because around adolescence they shift

from making stalling disfluencies to advancing disfluencies, possibly as a result of

environmental influences such as high turn-taking pressure (Howell, Au-Yeung, & Sackin,

1999). When the plan is not ready, the speaker is cued to slow the speech rate, which they

do at a young age by stalling. If the cues are repeatedly ignored, speakers make advancing

disfluencies, the speech system eventually loses sensitivity to the cue to slow down and

stuttering becomes persistent. Speech rate has a specific meaning in this connection insofar

as it refers to rate of advancement through a message. The persistent speakers are

advancing over-rapidly through the message for planning and execution to be synchronized

(though conventional measures, such as syllable per minute, which would include the

syllables involved in stallings would not be an appropriate index of speech rate

differences).
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EXPLAN is well supported by naturalistic data. The disfluencies of CWS are

characterized by different linguistic properties from those of adults who stutter. In English,

childhood fluency problems typically occur on FWs (Bloodstein & Gantwerk, 1967;

Bloodstein & Grossman, 1981). One type of disfluency that occurs on FW is whole word

repetition (Conture, 1990; Howell, 2007), as in ‘at at at school’. The features of childhood

stuttering fit a stalling explanation, in that word repetition appears to delay a more difficult

word rather than being difficult in themselves. In contrast, fluency problems for adults who

stutter occur on CWs, i.e. those with semantic content. CWs are typically less frequent in

English and phonologically more difficult (Dworzynski & Howell, 2004; Howell & Au-

Yeung, 2007; Howell, Au-Yeung, & Sackin, 2000; Howell et al., 2006). Both these factors

would make them less easily generated than FWs. Disfluencies often involve the first part

of CWs (Conture, 1990; Howell, 2007), as in ‘at ssssssschool’, and the more

phonologically difficult the word is, the more likely it is to be stuttered (Dworzynski

& Howell, 2004; Howell & Au-Yeung, 2007; Howell et al., 2000, 2006). This pattern of

disfluency suggests that disfluencies arise because the plan of the CW is not complete

(CWs being slow to plan) and disfluencies result when the speaker nevertheless starts the

word which results in part-word disfluencies which arise from this advancing process.

The differences between childhood and adulthood stuttering are consistent with the

EXPLAN hypothesis that CWS produce stalling disfluencies and adults who stutter

produce advancing disfluencies. This pattern is more difficult to explain in terms of the

CRH because it considers disfluency across the lifespan as qualitatively the same; that is, to

reflect covert repairs. Stallings have similarities with covert repairs but advancing

disfluencies are qualitatively different. To explain the pattern shift in terms of the CRH, one

possibility is that the change does not reflect a change in underlying mechanism, rather that

CWS make covert repairs in different places from adults who stutter. However, there is no

evidence for this.

Another possibility is that the change is an artifact of the cross-sectional designs that

Howell and colleagues used in the past. About 80% of children, who stutter in early life,

recover (Andrews & Harris, 1964), leaving a small subset who persist. The child group

would reflect the disfluency characteristics of children who will later recover, as well as

those who will persist. In contrast, the older age group would not include those CWS in

childhood but have since recovered (Wingate, 2002). If, as the CRH suggests, children who

recover from stuttering are similar to fluent speakers but those who persist constitute the

‘true’ stuttering population, then the data from the child group would reflect a mixture of

‘true’ and ‘non-true’ stuttering processes, but the adult data would reflect only the ‘true’

patterns. If these two groups differed in their speech processing, then the patterns of

disfluency found across the two groups could be expected to differ. This would be in line

with the CRH.

The thrust of the cross-sectional argument is negated by recent longitudinal findings

(Howell, 2007). CWS at around age eight were followed up until they were 12 plus. The

criteria for initial diagnosis of stuttering used clinical assessment and Riley’s (1994) SSI-3.

The children were reassessed at 12 plus, this time using self-report, parental report,

researcher’s assessment and severity based on SSI-3 again. These allowed cases where

stuttering continued (persistent) to be distinguished from cases where stuttering had ceased

(recovered). Patterns of stalling and advancing dysfluency were then examined. For
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recovered speakers, the absolute level of disfluencies decreased as they get older, but the

ratio of whole FW (e.g. ‘‘I, I, I’’), to advancings (e.g. ‘‘ssspilt’’) remained constant. This

suggests that these speakers continued to make the same proportion of stalling disfluencies,

but produce fewer disfluencies of either type. Speakers whose stuttering persisted, on the

other hand, showed an increased proportion of advancings, which indicates that they

changed from stalling to advancing disfluencies. This is inconsistent with the CRH, which

would predict that the pattern of disfluencies produced by children whose stuttering

persists would be different from the start, because they differ from other children (children

who recover or who are always fluent) in that they plan speech more slowly.

In summary, it is unclear whether stuttering arises because speakers with the disorder

make more covert repairs, or whether they are more vulnerable to mismatches between

planning and execution time and hence under pressure to overuse the advancing strategy

(leading to persistence of the problem). Neither the CRH nor EXPLAN fully addresses all

the empirical evidence, so both are possible explanations of childhood stuttering. This is

partly because each theory was developed to account for features of naturalistic speech and

neither has been extensively tested experimentally. There are arguments in favour of both

naturalistic and experimental paradigms (e.g. Mowrer, 1998; Bernstein Ratner, 2000,

respectively). Naturalistic data allows language to be studied in context, but makes it

difficult to determine the processing demands of language at a particular locus independent

of stuttering probability (Bosshardt, 1995, 2002). Experimental evidence is needed to

identify causal links in a non-circular fashion. For example, in the CRH, disfluencies are

explained as covert repairs but also as providing evidence for covert repairs. In EXPLAN,

CWs are claimed to cause adult stuttering because they are difficult to produce, but the

evidence that they are difficult to produce is that they are often disfluent (though work is

taking place which indexes difficulty independently). Naturalistic data alone cannot

resolve these issues, and both theories need experimental evidence from paradigms that can

directly test their predictions.

Experimental psycholinguistic studies of both fluent speakers and speakers who stutter

exist that use paradigms suitable for distinguishing these theories. Speech initiation time

(SIT) can be used as a measure of broader timing mechanisms related to speech planning.

Previous research has shown that adults who stutter tend to be slower than fluent speakers at

initiating various speech-like movements, nonsense syllables, words, short phrases, and

simple sentences (e.g. Adams & Hayden, 1976; Logan, 2003; Reich, Till, & Goldsmith,

1981; Watson & Alfonso, 1987).

Auditory priming studies are suitable for examining planning time and have been

carried out with 3–5-year-old children. In these paradigms, an auditory sentence or syllable

is presented (the prime), the child then describes a picture (the probe) and SIT is measured.

SIT is shorter for both CWS and children who do not stutter (CWNS) after primes that are

related to the probe. This is the case when material is primed phonologically and

syntactically (Anderson & Conture, 2004; Melnick & Conture, 2003; but see Pellowski &

Conture, 2005, for conflicting findings with CWS, using lexical priming). Priming can be

used to reduce the planning time needed for the production of different elements in a

phrase.

In the current study, the effect of priming on both the timing and fluency of speech

production is investigated. Specifically, a method is introduced that selectively primes
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different components of a simple utterance containing two FWs followed by a CW.

Selective priming of these word types aims to facilitate the planning of some parts of an

utterance and not others. Though CRH does not make specific predictions concerning

selective priming, it can be argued that if as suggested by the CRH, covert errors depend on

the extent of phonological complexity of the target words being planned, then CWs, which

are inherently phonologically more complex than FWs would show a larger priming effect.

For the same reason pre-CW pausing and CW duration would be shorter. CRH would not

predict any effects on CW when FW are primed or vice versa.

EXPLAN predicts a different effect of priming, on fluency and speech initiation, across

words in an utterance depending on whether a CW or a FW was primed (how FW priming

affects CWs and how CW priming affects FWs) which is examined here.

If EXPLAN is correct, making a CW faster to plan by priming it would reduce the

number of disfluencies by reducing the chances of a mismatch occurring between planning

and execution processes. This effect would be paralleled by an effect on speech timing, in

that there would be less silent pausing within the speech preceding the CW, because less

planning time would be needed. In contrast, making an FW easier to plan by priming it

would not reduce the number of disfluencies, because the FW occurs first in the phrase and

is easy to plan anyway, so the chances of a mismatch between planning and execution

processes would remain the same. In this condition, the effect on speech initiation would be

that more silent pausing would occur within the speech preceding the CW, because more

planning time would be needed for that word. Finally, although the effects of FW and CW

priming would apply to all children, if CWS would normally have slower SITs than CWNS

in the absence of priming, the effect of priming the CW versus the FW would be greater for

CWS than CWNS, because there would be more room for change.

The effect that priming would have on execution times is not clear. There is evidence

that adults produce words with a shorter duration after they produced identical prime words

(e.g. ‘sick, sick, sick’ rather than ‘sick, sit, sick, sit’) but children do not (Munson & Babel,

2005). Munson and Babel suggested that the effect of identical primes may have been

manifest in the pausing intervals before word production rather than the target word

durations, which would be in line with the prediction above, that priming in the current

study will reduce SIT. Munson and Babel also speculated that the priming effect of

identical words was masked by the production strategy of the children, who slowed down

and reduced their speech intensity as they progressed through the end of the list. In the

current study, the prime will be spoken only once and will sometimes include multiple

words, rather than multiple repetitions of single words, so a similar slowing strategy is

unlikely. It is possible that priming will influence the execution of words as well as the

planning, such that primed words will have shorter durations than unprimed words. If so,

this would influence fluency in the same direction as the predicted planning effect, so it

would not confound results. More interestingly, it is also possible that there would be a

difference between CWS and CWNS for word durations. The current study will record the

word durations of both groups of children.

In summary, the hypotheses drawn from EXPLAN for the current study are as follows:

(1) CWS and CWNS will produce shorter CW durations and fewer disfluencies after CW

priming than after FW priming. This effect will be greater for CWS than CWNS.
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(2) CWS and CWNS will produce shorter FW durations and less silent pausing within

their speech preceding the CW after CW priming than after FW priming. This effect

will also be greater for CWS than CWNS.

(3) CWS will have slower SITs than CWNS.

(4) CWS will have longer word durations than CWNS.

2. Method

2.1. Participants

Twenty-four native English-speaking children participated, split into groups of CWS

and CWNS. All participants were recruited from the UCL Speech Group database. The 12

CWS ranged in age from 3;10 to 8;11 (M 6;3) with 10 males and 2 females. All had a stutter

diagnosed by a speech and language therapist. Age of stuttering onset was available for 10

of the CWS and ranged from 2;0 to 6;6 (M 3;6). Age of onset was not known for the other

two CWS. All CWS had received Lidcombe Therapy at clinics in the London area. It was

not possible to conduct an SSI-3 because secondary feature data were not available. The

mean percentage of stuttered syllables in spontaneous samples was 10.87% (range 6.74–

21.2%).

Data from three further CWS were collected but not included in analyses, because two

(aged 9;4 and 9;3) fell outside the final age bracket of the study and one failed to comply

with the procedure (not consistently repeating the prime and not responding to targets in

full sentences). An upper boundary of 9 years was selected for the age group because

Howell, Au-Yeung, and Sackin (1999) found that the exchange from FW to CW stuttering

starts at around age 9. Including children only below 9 years means that they were likely to

constitute a qualitatively homogenous group in terms of the mechanism of their stuttering.

Also, the pilot experience with the two older participants indicated that the procedure was

not age appropriate for them in that the stimuli were too simplistic. The 12 age and gender

matched CWNS ranged in age from 3;9 to 8;9 (M 6;6), again with 10 males and two

females.

2.2. Materials and design

‘E-Prime’ software was used to run the experiment on a laptop computer. The design

included 20 pre-recorded auditory utterances as primes, 22 visual action-event cartoons to

provide two practice items and 20 targets (created in Microsoft PowerPoint 2000 and

transferred to bitmap form for inclusion in E-Prime), 37 static pictures as filler items (also

created in Microsoft PowerPoint 2000 and transferred to bitmap form for inclusion in E-

Prime). The inclusion of filler items is standard practice in a priming paradigm (e.g. Bock

& Griffin, 2000; Smith & Wheeldon, 2001), to avoid a strong cumulative effect of priming

by allowing time for activation to subside and to avoid a kind of ‘internal’ priming by

participants being able to predict the next item. Also, the fillers had the added benefit in the

current design of adding interest to the task and rendering it more ‘child-friendly’,

increasing the chances that children’s attention would be maintained and that they would

engage with the task up to completion. A pre-recorded beep coincided with the start of the
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target presentation. The 20 auditory primes were pre-recorded on audiotape in a sound-

treated laboratory by a 26-year-old native English-speaking adult female. Half were FW

primes. These were a second person singular pronoun (matching the gender of the

subsequent target cartoon) followed by the auxilliary ‘is’. The other half of the primes were

CW primes. These were a third person present perfect verb (matching the action depicted

by the subsequent target cartoon). For example, the target that depicted a boy swimming

would be preceded in the FW prime condition by ‘he is’ whereas it would be preceded in

the CW prime condition by ‘swimming’.

The 37 filler pictures each depicted a single animal character that the child was required

to name (badger, bear, bee, butterfly, camel, cheetah, cow, crab, crocodile, deer, dinosaur,

dog, dolphin, duck, elephant, fish, frog, giraffe, hedgehog, horse, kangaroo, lion, monkey,

mouse, owl, penguin, pig, rabbit, rhino, sheep, snail, snake, spider, squirrel, tiger, turtle,

and zebra). Table 1 contains details of the frequency of occurrence, age of acquisition and

imageability of the nouns from Baayen, Piepenbrock, and Gulikers (1995), Brown (1984),

Kucera and Francis (1967) and the MRC Psycholinguistic Database (1997) (no one

database contains entries for all words). The two practice and 20 target action-event

cartoons each depicted an intransitive action performed by a child. Half were performed by

a boy and half were performed by a girl. The intransitive verbs depicted in the practice

stimuli were ‘walk’ and ‘bend’. Those depicted in the 20 target stimuli were ‘cry’, ‘dance’,

‘dig’, ‘drink’, ‘eat’, ‘fly’, ‘jump’, ‘knit’, ‘paint’, ‘run’, ‘skate’, ‘skip’, ‘sleep’, ‘smile’,

‘sneeze’, ‘stamp’, ‘stretch’, ‘swim’, ‘swing’ and ‘wave’. Table 2 contains details of

frequency of occurrence, age of acquisition and imageability of the verbs from Brown

(1984), Kucera and Francis (1967) and Baayen et al. (1995) (again, no one database

contains entries for all words). When presented, each action-event cartoon lasted 2400 ms.

Each experimental item consisted of a single auditory prime that could be used to describe

the subsequent target, which was repeated aloud by the child, followed immediately by a

single target cartoon, which was described by the child in a single sentence. The stimuli

therefore provided 20 items for analysis.

The study employed a mixed design. As a between subjects variable, half the children

were CWS and half were fluent speakers. As a within subjects variable all children

experienced all 20 items in both the FW and the CW conditions, presented in two blocks of

40 trials. Each block contained all 20 experimental trials (FW and CW priming), and all 37

filler trials with three randomly selected to be repeated to bring the total to 40 (animal

naming),1 so each item was presented twice. On one presentation, each experimental item

was presented with a FW prime and on the other, it was presented with a CW prime. The

items were presented in pseudo-random order, with items 1–10 assigned to the FW

condition and items 11–20 to the CW condition in Block 1, and the reverse assignment to

conditions in Block 2, with the presentation order of trials being a randomly selected

experimental trial and a randomly selected filler trial alternately. The first item in Block 1

was from the FW condition and the first in Block 2 was from the CW condition, so that the

last item in the first block was never the same as the first item in the second. The blocks

each lasted around 5–10 min and a short rest was permitted between them. The order of
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Table 1

Details of the frequency of occurrence (Frequency), age of acquisition (AoA) and imageability for the nouns used

in the 37 filler pictures (data from Baayen et al.,1995; Brown, 1984; Kucera & Francis, 1967; MRC

psycholinguistic database 1997: No one database contains entries for all 37 words used)

Nouns Frequency AoA Imagability

Bird BVF KFWF Bird MRC Bird MRC

Badger 0.8645 – – 359 – 607 –

Bear 1.2095 9 57 220 – 601 572

Bee 1.2214 1 11 193 – – 623

Butterfly – – 2 – – – 624

Camel 1.3994 – 1 303 – – 561

Cheetah �0.1739 – 1 456 – 562 –

Cow 1.6051 1 29 174 – – 632

Crab – – – – 292 – 589

Crocodile 0.7471 – 1 316 – – 601

Deer – – 13 – 281 – 624

Dinosaur – – 1 – – – –

Dog – 8 75 – 169 – 636

Dolphin 0.48 1 1 442 – 626 –

Duck – 1 9 – 164 – 632

Elephant – – 7 – 222 – 616

Fish 1.493 – 35 275 – 578 615

Frog – – 1 – 258 – 617

Giraffe 0.1943 – – 342 – 628 –

Hedgehog 0.316 – – 366 – 639 –

Horse 2.1223 1 117 208 – – 624

Kangaroo 0.4281 4 – 368 – 627 –

Lion – – 17 – 244 – 626

Monkey 1.2577 – 9 269 – – 588

Mouse – 2 10 – 242 – 615

Owl – – 2 – 269 – 595

Penguin 0.7014 – – 392 – 620 –

Pig – 1 8 – 233 – 635

Rabbit – – 11 – 206 – 611

Rhino 0.2243 (!!!) – – 424 (!!!) – 591 –

Sheep 1.6033 1 23 208 – – 596

Snail – 1 1 – – – 577

Snake – – 44 – 289 – 627

Spider 0.8475 – 2 254 – – 597

Squirrel 0.7885 – 1 353 – – 642

Tiger 1.0776 – 7 331 – – 606

Turtle – – 8 – – – 564

Zebra 0.2786 – 1 370 – 648 –

Frequencies are presented for the Bird, Franklin, and Howard (2001) analysis of Baayen et al.’s (1995) CELEX

database (labeled Bird), Brown’s (1984) verbal frequencies (labeled BVF), and Kucera and Francis’ (1967) written

frequencies (labeled KFWF). Bird’s frequencies are the logarithm of the combined written and spoken count

divided by total words in the Celex database. BVF is the number of occurrences of a word per 1,000,000 spoken

words and KFWF is the number of occurrences of a word per 1,000,000 written words. Age of acquisition and

imageability were obtained from Bird et al. (2001) and the MRC psycholinguistic database (1997). MRC age of

acquisition is from the norms of Gilhooly and Logie, multiplied by 100 to produce a range from 100 to 700 (min

125; max 697; mean 405; S.D. 120). Bird et al’s (2001) AoA are ages multiplied by 100. Bird et al.’s imageability

ratings are derived from a merging of the Pavio, Colorado, and Gilhooly-Logie norms: Details of merging are

given in Appendix 2 of the MRC Psycholinguistic Database User Manual (Coltheart, 1981), and have values in the

range 100 to 700 (min 129; max 669; mean 450; S.D. 108).



blocks was counterbalanced across participants, with half receiving Block 1 followed by

Block 2 and half receiving the reverse order. The design had the advantage of controlling

for how fast children recognised items by presenting every item in both conditions and

measuring priming as a relative effect between the conditions.

2.3. Procedure

Children sat next to the experimenter, in front of a laptop computer and listened to

the priming stimuli through loudspeakers. They were told that on each priming trial

they would hear either a word or phrase, which they should repeat exactly. Repetition of

primes is standard practice in the original production-priming paradigm (e.g. Bock’s,

1986, original paradigm), to ensure that the mechanisms of speech production

specifically were primed, because it is a matter of theoretical debate over whether

speech production and comprehension share the same mechanisms. Though a priming

effect on language production has subsequently been found to occur on the basis of

comprehension stimuli, the adoption of the repetition design in the current study avoids

any uncertainty over whether the mechanism that was primed is that which is involved

in speech production.

After repeating the prime, children were asked to watch the cartoon that followed and

describe it as soon as possible by saying ‘he is’ or ‘she is’ followed by the action.
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Table 2

Details of the frequency, age of acquisition (AoA) and imageability for the verbs used in the experiment

Verbs Frequency AoA Imagability

Bird BVF KFWF Bird MRC Bird MRC

Cry 1.4681 – 48 159 – 619 478

Dance 1.566 4 90 295 – 553 510

Dig 1.6021 – 10 230 – – –

Drink 2.0153 25 82 166 211 573 553

Eat 2.4617 9 61 167 – – 563

Fly 1.552 2 33 200 – 627 582

Jump – – 24 – 222 – 506

Knit – – 10 – – – –

Paint 1.8561 22 37 238 – 585 567

Run – 22 212 – – – –

Skate 0.4284 – 1 357 – 562 563

Skip 0.9727 – 5 288 – – –

Sleep 2.11 7 65 193 – – 530

Smile 1.9197 4 58 215 208 595 615

Sneeze – – – – – – 562

Stamp 1.2214 – 8 269 – 494 –

Stretch 1.8296 1 26 387 – – –

Swim 0.9646 1 15 275 256 612 572

Swing 1.7476 1 24 237 – – –

Wave 1.6572 2 46 213 – – 542

Frequencies are presented for Bird et al.’s (2001) analysis of Baayen et al.’s (1995) CELEX database (labeled

Bird), Brown’s (1984) verbal frequencies (labeled BVF), and Kucera and Francis’ (1967) written frequencies

(labeled KFWF). Scores are as described in Table 1.



Importantly, they were told that even if they could start the sentence with the same words

they had just repeated (i.e. in the priming phase), they should say the words again. They

were told to respond as fast as they could whilst at the same time trying to get the answer

right. This was to induce time pressure and avoid a floor effect on the dependent variables

by allowing too much planning time. Children were also told that between each picture

description they would see an animal and they should just name it. All participants then

completed two practice trials during which they heard a prime that was unrelated to

experimental trials, and then saw an unrelated target and heard a recorded example

response that played after the beep. They completed the same trials immediately

afterwards. Participants continued straight on to the selected 40-trial block. They were

allowed a short break in between the trial blocks, if necessary.

Events on each trial were as follows. First, the screen was blank whilst a pre-recorded

spoken prime was played by the computer (e.g. ‘He is’ for the FW condition or ‘waving’ for

the CW condition), which the child repeated. The child’s own repetition constituted the

prime, as explained above. The experimenter initiated presentation of the target stimulus

by pressing a key as soon as the child had finished repeating the prime sentence. Requiring

the experimenter to initiate a trial allowed for variation in the time it took for the child to

repeat the target and also avoided the distraction that would have been entailed if the child

had pressed the key him or herself. All targets lasted exactly 2400 ms, constituting six

slides, displayed for 400 ms each. A beep was produced coincident with the start of the first

slide, to indicate that the target had started and mark the start of the child’s response time.

The mechanism by which to present the target pictures was carefully considered and it was

decided to do so manually. The authors acknowledge that there are some methodological

difficulties with this, in that it introduces another potential source of error. However, there

were also problems with automatic presentation, and the authors believe the manual method

can be justified. Clearly, automatic presentation was not possible immediately after the target

because time needed to be allowed for a child to repeat the prime. It was not possible to

automatically trigger target presentation using a voice-activated microphone because

multiple words were repeated, sometimes disfluently, so pausing was present. The authors

considered having the primes automatically presented after a set time limit but there would be

two important disadvantages of this. First, the predefined gap in which to repeat the prime

would need to be set at the maximum required to avoid spoiling data from the children who

took the longest. This would mean that many children would experience a gap after finishing

the prime and seeing the target. This is important because the prime stimulus is the child’s

own production in the production-priming paradigm used here, the child’s own production is

the prime stimulus. A gap before this and the target could be expected to allow the priming

activation to subside. Moreover, for CWS, the length of time required to articulate words can

vary widely both between and within children, so the length of the gap between the prime and

target would vary widely between individual children. Also, the gap would usually be longer

for CWNS, who would complete the prime quicker, unless it was shorter for them, which

would mean this factor would vary systematically between the groups and be potentially

confounding. In sum, automatic presentation would create gaps between prime and target that

would likely be confounding.

Second, slowing down the task by leaving a gap would have made the task more tedious

for the children participating. In a priming design, participants need to be trying to answer
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quickly, or a floor effect would mask the effect. This could occur if children were not fully

focussed on the task because their attention wandered whilst awaiting the target item. Also,

a less interesting task would risk higher drop out rates.

In favour of manual presentation of targets is that, though there may be variation in the

speed with which the experimenter pressed the button, there was no reason to expect that

this would vary systematically. Therefore, across multiple trials in each condition, it would

be expected that this source of error would vary randomly. The only confounding effect of

this variable would be to mask a small effect size and lead to a type II error, in which case

any effect that was found could be considered even more reliable. Also, the presentation of

the target would be consistent relative to the individual participant, meaning that it always

occurred immediately after the prime (the child’s own utterance), before the predicted

resulting activation had subsided.

For the reasons described, it was decided that the best solution in the current design would

be for the experimenter to present targets manually. Stimulus onset asynchrony (the time

period from the onset of the auditory prime to the onset of the target picture) was not constant

across trials but rather the need to allow children to repeat the prime in full was prioritized.

The full session for each child was recorded onto a DAT tape and later transferred to PC.

Each file was analysed using the speech filing system (SFS) software developed by Huckvale,

Brookes, Johnson, Pearce, Whitaker, Simpson and Breen (available as share ware at http://

www.phon.ucl.ac.uk/resource/sfs/). This software allowed the user to listen to the recording,

view its sound wave and create transcriptions that were time aligned to the sound wave by

manually placing boundary lines on the sound wave to mark the location of significant sounds

(see Fig. 1 for an annotated display of the responses after a child was primed). A time-aligned

transcription was added to the sound wave to mark the starts and ends of the prime, its

repetition, the beep cue, and the child’s response for each trial (an example is shown in Fig. 1).

The child’s responses were transcribed in the Joint Speech Research Unit (JSRU)

transcription alphabet and time-aligned word by word. These data were used to derive five

dependent variable measures for each trial. (1) Disfluencies were counted (also broken down

into FWand CW disfluencies). (2) SITwas measured by subtracting the time at which the start

marker of the first response word occurred from the end marker of the beep. (3) CW duration

and (4) FW duration (with 3 consisting of oneword and 4 consisting of the sum of twowords).

Finally, (5) the amount of pausing prior to production of the CW was determined by summing

the duration of silent periods that occurred between the end marker of the first response word

(a FW) and the start marker of the CW (usually the final responseword but on 10 occasions for

CWNS and 12 occasions for CWS it was followed by another word or words, which were not

included in the pausing duration2).
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2 On these responses, a child produced extra information after the target sentence had been successfully

produced, such as ‘He is stretching’ followed by ‘high like a monkey’. Such responses were classed as valid,

because they encompassed all the required elements to meet the scoring criteria. For analyses, they were included

in the disfluency data in their entirety, because any influence that the prime had on planning and execution could

occur at any loci in the whole utterance, so to disregard any elements of the response would be to risk disregarding

data that validly reflected the effect of the independent variable (the prime type). For the timing analyses, these

responses were also included, but only the basic intransitive sentence was used and the subsequent additional

words were removed (‘high like a monkey’ in the example given). This was to ensure the word durations and

pausing durations were done on sentences of equal length.

http://www.phon.ucl.ac.uk/resource/sfs/
http://www.phon.ucl.ac.uk/resource/sfs/


2.4. Classification of valid responses

Responses were classed as valid if they were a simple intransitive sentence that fitted the

template: ‘Pronoun is Verb-ing’. Responses that contained additional subsequent elements
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Fig. 1. Annotated display of the responses after a child was primed with measures indicated (the key for the

symbols used in the bottom line of the display and the segments used for the durations that were used in the

analyses are shown at the foot of the figure). The numbers in the key refer to the perpendicular lines reading left to

right. The same numbers are used to the right of the ‘‘=’’ sign in the section labeled ‘‘Durations used in the

analyses’’.



(but not prior elements) were also included (see footnote 2). All other responses were

excluded. For example intransitives that used nouns and not pronouns were not included

because they precluded the expression of any benefits of pronominal priming.

2.5. Classification of disfluencies

All types of speech disfluency were included for analysis, except silent pausing, which

occurs in fluent speech. This encompasses, full- and part-word repetitions, prolongations,

phrase repetitions, blocks and filled pauses (e.g. ‘um’, ‘er’). Blocks were classed as

disfluencies because articulatory sounds could be heard for these.

2.6. Reliability

To check on the reliability of the results, four files were analysed by an independent

researcher. The mean differences for SIT, FW duration, pause duration and CW duration

were less than 10 ms (3.4, 7.1, 5 and 9.1 ms, respectively with corresponding sds of 13,

14.1, 6.2 and 7.5 ms2).

3. Results

Tables 3 and 4 display the means and SDs for disfluency and timing data, respectively,

for both groups in each condition. Table 5 displays the percentage of trials for both groups

in each condition that contained disfluencies.
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Table 4

The mean and S.D. for the timing data, for both groups (CWS, CWNS), for FW and CW prime types

Group Prime

type

SIT (ms) Pre-CW pausing (ms) FW duration (ms) CW duration (ms)

Mean S.D. Mean S.D. Mean S.D. Mean S.D.

CWS FW 984.62 459.34 273.41 228.78 652.46 134.73 713.44 116.74

CW 993.90 311.97 162.13 93.37 633.63 123.31 780.96 136.60

CWNS FW 814.77 213.46 171.14 232.03 555.08 211.03 625.74 134.10

CW 954.39 370.55 86.68 102.15 522.96 136.84 643.06 137.45

The data (reading left to right) are SIT, pre-CW pausing, FW duration and CW duration.

Table 3

The mean and SD of number of disfluencies, for both groups (CWS, CWNS), for FW and CW prime types given

separately for all disfluencies, FW disfluencies and CW disfluencies

Group Prime type All disfluencies

(total)

FW disfluencies

(total)

CW disfluencies

(total)

Mean S.D. Mean S.D. Mean S.D.

CWS FW 0.32 0.21 0.19 0.13 0.13 0.17

CW 0.16 0.19 0.09 0.10 0.07 0.17

CWNS FW 0.11 0.08 0.04 0.04 0.05 0.04

CW 0.05 0.05 0.03 0.04 0.01 0.02



Separate ANOVAs were carried out for each of the dependent variables (disfluencies,

pre-CW pausing, SIT, FW duration and CW duration).

3.1. Disfluency analysis

Two ANOVAs were conducted on the disfluency data, one for FW disfluencies and one

for CW disfluencies. FW and CW were analysed separately as, according to EXPLAN

disfluencies on the words originate from different processes. Each ANOVA used a 2 � 2

mixed design with group (CWS vs. CWNS) as a between subjects variable and prime type

(CW vs. FW) as a within subjects variable.

For FW disfluencies, there were significant main effects of group, F(1, 22) = 10.947,

p < 0.01, and prime type, F(1, 22) = 14.342, p < 0.01, and a significant interaction

between the two F(1, 22) = 11.354, p < 0.01. As would be expected, CWS produced more

disfluencies than CWNS. As predicted by hypothesis 1, there was a significant effect of

priming in that all children produced fewer FW disfluencies after CW primes than after FW

primes. Also as predicted, this difference was greater for CWS than CWNS, as shown by

the interaction, which can be seen in the interaction plot of for FW disfluencies in each

group and prime type (shown in Fig. 2). The figure shows the estimated marginal means,

rather than observed means, because this gives a clearer picture of the interaction effect by

showing the linear combination of the parameters without the error.
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Fig. 2. The estimated marginal mean number of FW disfluencies for each fluency group and each prime type.

Table 5

Percent trials containing one or more disfluency for each group in each prime condition

Group Prime type Disfluencies

CWS FW 31.660

CW 13.125

CWNS FW 10.112

CW 3.955



For CW disfluencies, there was a significant main effect of prime type F(1, 22) = 9.720,

p < 0.01, but no differences between the groups (non-significant F value for the interaction

(1, 22) = 0.389). Fewer CW disfluencies overall were produced after a CW prime than a

FW prime (shown in the interaction plot of for CW disfluencies in each group and prime

type, in Fig. 3). This is as predicted, except for the lack of an interaction effect.

3.2. Pausing

A 2 � 2 mixed design ANOVA was performed with group (CWS vs. CWNS) as a

between subjects variable and prime type the pause preceded (CW vs. FW) as a within

subjects variable. For pre-CW pausing, there was a significant main effect of prime type,

F(1, 22) = 7.885, p < 0.05, but no differences between the groups (non-significant F

values (1, 22) = 1.970 and 0.148 for group and interaction, respectively) (see Fig. 4, which

shows the mean length of pre-CW pausing in ms for each group and each prime type). Both

groups paused for longer prior to producing the CW after a FW prime than after a CW

prime. This was expected on the basis that the CW prime reduces the need for pausing to

create more planning time because priming helps to ensure that the plan is complete.

3.3. Speech timing analysis

3.3.1. SIT

For the analysis of the temporal features of participants’ speech, disfluent responses

were excluded. This was because they would distort the pattern of durations by increasing

durations on the word type that was stuttered in an unsystematic fashion. For example one

very long disfluency on a CW could significantly increase the mean CW durations. A 2 � 2

mixed design ANOVA was performed with group (CWS vs. CWNS) as a between subjects

variable, and type of prime the pause preceded (CW vs. FW) as a within subjects variable.
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Fig. 3. Mean number of CW disfluencies for each fluency group shown separately for function words (F) and

content word (C) primes.



There were no significant effects for SIT (non-significant F values (1, 22) = 1.175, 0.696

and 0.901 for prime type, group, and interaction, respectively).

3.3.2. Duration

Again, the 2 � 2 mixed design ANOVA was used, with group (CWS vs. CWNS) as a

between subjects variable, and type of prime (CW vs. FW) as a within subjects variable.

One was conducted for FW duration and one for CW duration. For FW duration there were
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Fig. 5. Mean function word durations, for both fluency groups and each prime type.

Fig. 4. Mean length of pre-CW pausing in ms for each fluency group and each prime type.



no significant effects (non-significant F values (1, 22) = 1.530, 3.005, and 0.104 for prime

type, group, and interaction, respectively), but for CW duration, there was a significant

main effect of group, F(1, 22) = 3.456, p < 0.05. CWNS produced shorter CW durations

than CWS in both conditions although this was only significant when pooled across prime

types (there were no effects of prime type, as shown by the non-significant F values (1,

22) = 3.456 and 1.289 for prime type and interaction, respectively). That is, CWS produced

longer CWs, but not FWs, than the CWNS. This may reflect the fact that FW are easier to

produce. These findings suggest that the CWS produced all words slower than CWNS (see

Figs. 5 and 6, which show mean FW and CW durations, respectively, for both groups and

each prime type).

4. Discussion

Three sets of hypotheses were given at the end of the introduction (concerning effects on

fluency, pausing and timing behaviour). The results pertaining to each of these topics are

summarised and the implications for EXPLAN and CRH are discussed.

4.1. Fluency

The first aspect of hypothesis 1, based on EXPLAN, was that all children (CWS and

CWNS) would be more fluent when primed for CWs than for FWs because FW-priming

advances when the CW-plan has to be available but not vice versa. For both CWS and

CWNS, the effect on speech fluency of selectively priming different components of a target

utterance is clear-cut. As predicted, both groups produced significantly fewer disfluencies
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Fig. 6. Mean content word durations, for both fluency groups and each prime type.



after a CW prime than after a FW prime. There was no difference between incidence of

disfluencies, on CWs versus FWs, although EXPLAN would predict more disfluencies on

FWs at this age. It is not clear why this should be the case, although possibly some of the

older children were already beginning to shift to advancing disfluencies.

The second part of the hypothesis was that the differential effect of FW and CW priming

on fluency would be greater for CWS. Consistent with this, a between-groups difference

was also evident: although the groups showed the same pattern, the impact of priming was

significantly greater for CWS than for CWNS. These data are consistent with the EXPLAN

model of speech production (Howell & Au-Yeung, 2002), but are difficult to reconcile with

the CRH (Kolk & Postma, 1997), which would not predict a difference between the two

priming conditions.

The findings suggest that the same process underpins the production of disfluencies for

both CWS and CWNS and that it takes the form of a timing misalignment between

planning and execution. The production of a CW immediately before using it in a picture

description reduced the time needed to plan the CW online by activating the plan for the

CW already, so that it was available in advance. This would reduce the discrepancy

between the time needed to plan the CW (relatively long) and the time needed to execute

the FWs (relatively short), and in turn decrease the likelihood of speaking disfluently. It

appears that CWS plan CWs more slowly than do CWNS even in non-primed

circumstances. The data on the temporal features of the responses support this explanation.

4.2. Pausing

Hypothesis 2 was that all children (CWS and CWNS) would pause more prior to

producing the CW after FW primes than after CW primes, and this difference would be

greater for CWS (reflecting a stalling strategy). FW priming caused both speaker groups to

pause for longer before producing their target CW than did CW priming. This suggests that

CW priming reduced the online planning demands for all children by supplying the CW

beforehand, such that they needed a shorter pause. This explanation is consistent with the

finding that all children were more fluent after CW priming. However, there was no

evidence that the effect was greater for CWS than for CWNS (no main effect or interaction

between fluency groups), which would be expected if CWS planned speech more slowly

usually and coordinated planning and execution more poorly. Possibly, this between groups

difference was obscured by the tendency for CWS to express their need for extra planning

time in the form of disfluencies, rather than pausing.

4.3. Timing

The third hypothesis was that CWS should have slower SITs than CWNS overall,

regardless of priming condition (reflecting the literature on SIT in adults who stutter) but no

differences were found in SITacross fluency groups. It was not clear why this was but could

reflect a cross-sectional effect, in that the adult research would be based on people whose

stuttering persisted, which represents a different population from child studies.

Another interesting finding in the timing data is that the target word durations of CWS

were consistently longer overall than those of CWNS, regardless of priming condition, as
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predicted in hypothesis 4. This suggests that in non-primed circumstances CWS would be

slower to plan the CW. This would explain why CW priming increased the fluency of CWS

more than that of CWNS. The slower production of CWs by CWS could be due to a

planning deficit, either phonological or otherwise. Alternatively, it could be that CWS

adjust to their speech problem by trying to produce difficult words (usually CWs) more

slowly to avoid stuttering, either spontaneously or prompted by therapy. The duration

pattern found was not predicted at the outset of the study and is not readily explained by

EXPLAN. However, it could account for the difference between the groups in terms of the

impact of priming on fluency, and deserves further attention.

This aspect of childhood stuttering is unlikely to be straightforward. Any future research

along these lines would benefit from taking a developmental perspective that is integrated

with the literature on normal phonological development in childhood. For example, there is

evidence that early phonological development is influenced by infants experience of their

language input, including the perception of their own productions, and the speech-

production capacities with which they enter into phonological acquisition. If CWS are

slower to plan language than are CWNS, then these factors could interact in complex ways

over the course of development (McCune & Vihman, 2001; Vihman, 2004; Zamuner,

2003). Detailed investigation of various age groups would be necessary to unpick the

origins and course of any such differences.

4.4. Wider discussion

The findings from the current study have implications for the nature of the process

underlying a disfluent speech event. The fluency data show that fluency increases when

planning time for the CW is taken out of the equation during online production. This provides

the first experimental support that speech disfluency is generated by a timing misalignment at

the speech–language interface, via a trade-off between the execution and planning time of

different word types. However, this is not the whole story behind childhood disfluency. The

current data indicates that there are other differences between the speech processing of CWS

and CWNS, because the effect of priming on fluency is greater for CWS compared to CWNS,

and the patterns apparent in the temporal data. This is not consistent with the EXPLAN

account, which claims that before the teenage years, the difference between CWS and CWNS

constitutes a difference placing along a continuum of normal fluency. The remainder of this

discussion will address how this difference might best be explained.

At first glance, the current finding that CWS produce their speech slower than CWNS

could be taken as support for Kolk and Postma (1997) CRH, but closer inspection of the

results does not bear this out. The data are consistent with CWS having a slower planning

system than CWNS, but this is not necessarily phonological in nature. The stuttering

literature has provided evidence for multiple types of planning deficits to account for

stuttering, including the syntactic level (e.g. Anderson & Conture, 2004; Bernstein Ratner,

1997; Karniol, 1995) and the metrical level (Wingate, 2002). Indeed, the current finding for

lexical priming that showed the effect was greater for CWS than CWNS was also found by

Anderson and Conture (2004) for syntactic priming. The question of which is the most

relevant level of planning for fluency continues to be the subject of much debate and it

would be premature to assume that the current finding reflects a phonological deficit.
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A more serious problem for the CRH is that the disfluency data from the current study are

better explained as the result of a timing misalignment process than as covert repairs. If all

words are vulnerable to premature phonological selection by CWS, there is no reason to

expect that priming one lexical class would be of less benefit than another, as was the case in

this study. Also, the higher number of disfluencies found after FW priming than after CW

priming applied equally to target words of both lexical classes. The CRH could explain why

the provision of the CW plan would eliminate CW disfluencies, because it would remove the

need to phonologically plan online. However, CRH could not explain why priming of the CW

plan would reduce FW disfluencies, as it does not include any mechanism that links the

planning of the two units. A trade-off scenario between the different elements of the sentence

is required to explain why priming one component affects another.

Finally, the finding that FW priming leads to longer pausing before production of the

target CW is consistent with the EXPLAN trade-off scenario, whereas the CRH makes no

predictions concerning this. In relation to the current data, the EXPLAN provides a better

explanation of the mechanisms underlying speech disfluency than does the CRH, which

conflicts with the evidence. One way in which CRH could account for the results is by

noting that in FW priming, the participant is presented with a sentence fragment (e.g., she

is. . .) followed by a picture of the action to be named. These sentence fragments could lead

the participant to predict the upcoming CW. Often, the predicted word will be different

from the word actually presented (in the picture). If this were to be the case, FW priming in

this paradigm would lead to the planning of a CW that is different from the target word.

Such inadequate planning could conceivably underlie the increase in CW disfluency, after

FW priming. This remains to be tested. In the remainder of this article, we consider how the

EXPLAN theory can be extended to account for the slower planning of CWS compared

with CWNS.

The issues at hand are helped by reflecting on the nature of the language production

system. Various different types of planning appear to affect fluency but none provides a

conclusive explanation on its own. This raises the question of whether a deficit that is specific

to any one level of planning could adequately explain childhood disfluency. One hypothesis

that can account for the stuttering literature and the current data is that stuttering reflects a

problem with parallel streams of linguistic processing (e.g. Bosshardt, 1995, 2002). As an

extension to the EXPLAN theory that the current data support, this could be easily integrated

because both models share a focus on the central role of parallel processing in language

production. There is some dual-task-based evidence from adults who stutter to support the

hypothesis (Arends, Povel, & Kolk, 1988; Bosshardt, 2002), though the impact on fluency of

dual-tasking varies according to how complex the secondary task is (Arends et al., 1988). In

light of the developmental nature of stuttering, it would be interesting to explore the idea with

children. The hypothesis is in line with current results, in that the provision of the CW plan by

priming would eliminate the need to carry out parallel online linguistic processes. If the

immediate cause of disfluency was the same for all speakers then all would exhibit disfluency

on the most difficult part of the production process, and CW priming would help by providing

the plan for the difficult word. Moreover, if CWS have more problems with parallel

processing than do CWNS then priming would be even more helpful for them.

If problems with the control of parallel processes could explain childhood stuttering,

one question that arises is why some children’s stuttering persists into adulthood whilst
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most recover (Andrews et al., 1983; Yairi & Ambrose, 1999). Interestingly, an explanation

can be reached by combining the parallel processing hypothesis with what is known about

how children’s language develops. The usage-based approach to language acquisition

(Langacker, 1987) has revealed that early in development, at around 1 year of age, children

do not possess knowledge of abstract linguistic relations. For example they do not correct

an ungrammatical English word order used with a novel (made up) verb until around 3

years of age (Abbot-Smith, Lieven, & Tomasello, 2001). Instead, their early productions

are based on item-based schemas that can be derived from the input. That is, their

knowledge is a kind of mental template containing some concrete components and an

abstract slot, from which they produce various instantiations like ‘I got the butter’ and ‘I got

the door’ from the schema ‘I got the X’ (Lieven, Behrens, Speares, & Tomasello, 2003).

There is also evidence to suggest that directly accessed, fully specified language is more

easily and quickly produced than language that is accessed indirectly via abstract relations

(e.g. Vogel Sosa & MacFarlane, 2002).

An interesting hypothesis is that when children are young, they can readily produce the

specified parts of a schema during real-time speech, but they have relative difficulty

accessing an item with which to fill the abstract slot. This could lead to an EXPLAN-like

mismatch between planning and execution time as outlined in the introduction (Howell &

Au-Yeung, 2002; Savage & Lieven, 2004) that would lead to disfluent speech. The

hypothesis is in line with the data on childhood disfluency in that the ‘slot’ filling word

would often (although not always) be a CW and the concrete items would often (although

not always) be FWs. Early in development, as children were still getting to grips with using

their recently acquired partially abstract linguistic knowledge, many children would be

expected to exhibit disfluencies. The difference between normally developing children and

those who had a parallel processing control deficit would be obscured by a ceiling effect on

disfluencies created by the use of an immature language system. Later, as the system

matured, the difference would be manifest as a division between recovered and persistent

stuttering. This explanation could provide a developmental perspective on the parallel

processing hypothesis that was formed on the basis of adult stuttering data.

Clearly, the theory outlined above is preliminary, and much empirical work would need

to be done before it could be considered as anything more. It is presented as an interesting

possibility, and the current data do not directly reflect on it. The current findings serve two

main purposes. They offer the first direct experimental support for the EXPLAN model

rather than the CRH, but they also suggest that EXPLAN is incomplete as a stand-alone

explanation for developmental stuttering, particularly as concerns the difference between

fluent, recovered and persistent stuttering. In future, research in this area needs to be

opened up to explore additional possibilities, with an emphasis on incorporating findings

from child language and non-linguistic cognitive literature.

5. Conclusions

The current study supports the EXPLAN model of speech production as a good account

of the processes immediately underlying a disfluent speech event, although not all the

predictions of EXPLAN were met and some interesting questions were raised about
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whether the speech systems of CWS are qualitatively different from those of CWNS. A

particularly interesting area for future investigation would be to test different age groups on

the current paradigm. Counter to what EXPLAN would predict, no more disfluencies on

FWs than on CWs were produced by children in either group. It was suggested that this was

because some of the older children were already beginning to shift to advancing

disfluencies. It would be interesting to investigate developmental effects more directly by

repeating the current study with children in more strictly defined age groups.
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Appendix A. Continuing education

1. Previous work has shown that priming for children who stutter occurs for:

a. Syntactic and lexical factors.

b. Syntactic and phonological factors.

c. Lexical and phonological factors.

d. Syntactic, lexical and phonological factors.

2. Which theory or theories predict that language processing is different in children who

stutter compared with children who do not stutter?

a. CRH and EXPLAN.

b. CRH.

c. EXPLAN.

d. Neither CRH nor EXPLAN.

3. EXPLAN predicts that the factors that affect stuttering are:

a. Planning.

b. Motor execution.

c. Planning and motor execution.

d. Neither.

4. The finding that, for all children, FW priming increased CW disfluency rate is predicted

by:

a. CRH alone.

b. EXPLAN alone.

c. Both CRH and EXPLAN.

d. Neither.
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